Iowa Lakeside Laboratory

Director
- Mary P. Skopec (Geographical and Sustainability Sciences)

Iowa State University Participating Faculty
- Lori Biederman (Ecology, Evolution, and Organismal Biology), Alexander Braidwood (College of Design), Brianna Burke (English and American Indian Studies), James Colbert (Ecology, Evolution, and Organismal Biology), Elizabeth Swanner (Geological and Atmospheric Sciences)

University of Iowa Participating Faculty
- Matthew P. Dannenberg (Geographical and Sustainability Sciences), John F. Doershuk (Anthropology), Andrew A. Forbes (Biology), Marc A. Linderman (Geographical and Sustainability Sciences), Corey D. Markfort (Civil and Environmental Engineering/Mechanical Engineering), Susan Meerdink (Geographical and Sustainability Sciences), Silvia Secchi (Geographical and Sustainability Sciences), John F. Doershuk (Anthropology), Andrew A. Forbes (Biology), Elizabeth Swanner (Geological and Atmospheric Sciences)

University of Northern Iowa Participating Faculty
- Laura Jackson (Biology), Mark Meyers (Biology), Patrick Pease (Geography/Social Science and History Education), Daryl D. Smith (Biology)

Website: https://iowalakesidelab.org/

Iowa Lakeside Laboratory is a field station run cooperatively by the University of Iowa, Iowa State University, and the University of Northern Iowa. Students at all three institutions, as well as visiting students, nationally and internationally, may take Iowa Lakeside Laboratory courses for credit through their home institutions.

Iowa Lakeside Laboratory was established in 1909 for the conservation and study of the rich flora and fauna of northwest Iowa, especially the numerous lakes, wetlands, and prairies of the Iowa Great Lakes region. The campus is located on approximately 140 acres of restored prairie, wetland, and gallery forest along the west shore of West Okoboji Lake. Teaching and research facilities include eight laboratory buildings, a library, and a lecture hall. Living accommodations include cottages, motel-style units, and a large mess hall. All students are encouraged to stay at Lakeside while they are taking courses to derive full advantage of its educational, professional, and social life.

Mission

Lakeside’s mission is to provide undergraduate and graduate students an opportunity for hands-on experience in a variety of natural and human environments through its field-oriented courses and to provide research facilities and support for graduate students and faculty members working on research projects in northwestern Iowa.

Summer Session

Each summer Iowa Lakeside Laboratory offers students a unique educational experience—small, inquiry-based, full-immersion, field-oriented courses in the natural sciences (archaeology, biology, botany, ecology, hydrology, soils, zoology) and related areas, such as environmental sciences, environmental humanities, sustainability, and the health sciences. Courses are taught at the sophomore/junior level and the senior/graduate level. Enrollment usually is limited to 10 or fewer students per course. Most courses meet all day Monday through Friday, last up to four weeks, and offer 1 s.h. of credit for each week (40 clock hours) in class. One- and two-week courses also are available, including courses designed especially for teachers and professionals.

Not all courses are offered every year; visit the Course Catalog on the Iowa Lakeside Laboratory website or consult summer course offerings at the University of Iowa or the other public universities in Iowa to learn which courses will be offered during a particular summer session. Students should check with their advisors to determine whether specific courses count toward requirements for their majors or minors or toward other requirements.

Research

Research projects by undergraduates, graduate students, and faculty members can be completed either on the Iowa Lakeside Laboratory campus or at many nearby natural areas. Undergraduate and graduate students are strongly encouraged to work on independent projects at the laboratory, and graduate students are welcome to use Lakeside as a base for their thesis and dissertation research. Laboratory space and other facilities are available for long- or short-term research projects.

Registration

Students may enroll in Iowa Lakeside Laboratory courses by submitting an online registration and housing form on the Iowa Lakeside Laboratory website. Information about scholarships, tuition, and housing also can be found on this website under the Student Resources section.

Registration usually opens in early January. Enrollment is limited, so students should register early. When they register, they must apply for housing or indicate that they plan to live on campus.

Financial Support

Financial support is available for undergraduate and graduate students. The Friends of Lakeside Lab organization provides a merit scholarship that is equivalent to the cost of room and board. Additional financial support may be available from Iowa Lakeside Laboratory and from other sources. Consult the Office of Student Financial Aid for information about support, including work-study and loan programs.

Courses

Iowa Lakeside Laboratory Courses

IALL:1010 Earth, Air, and Sky 1-4 s.h.
Essentials of earth science, including astronomy, meteorology, geology, and paleontology; includes laboratory and fieldwork.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>IALL:1030</td>
<td>Natural History Workshop</td>
<td>1-2 s.h.</td>
</tr>
<tr>
<td>IALL:1040</td>
<td>Field Archaeology</td>
<td>3-4 s.h.</td>
</tr>
<tr>
<td>IALL:1045</td>
<td>Illustrating Nature: Photography</td>
<td>1-2 s.h.</td>
</tr>
<tr>
<td>IALL:3034</td>
<td>Topics in Ecology and Sustainability</td>
<td>1-4 s.h.</td>
</tr>
<tr>
<td>IALL:3099</td>
<td>Earth and Environmental Science for Educators</td>
<td>1-4 s.h.</td>
</tr>
<tr>
<td>IALL:3101</td>
<td>Science Teaching Methods</td>
<td>1-3 s.h.</td>
</tr>
<tr>
<td>IALL:3103</td>
<td>Aquatic Ecology</td>
<td>2,4 s.h.</td>
</tr>
<tr>
<td>IALL:3106</td>
<td>Plant Taxonomy</td>
<td>2-4 s.h.</td>
</tr>
<tr>
<td>IALL:3109</td>
<td>Ecology and Systematics of Algae</td>
<td>2,4 s.h.</td>
</tr>
<tr>
<td>IALL:3113</td>
<td>Undergraduate Independent Study</td>
<td>1-4 s.h.</td>
</tr>
<tr>
<td>IALL:3114</td>
<td>Field Mycology</td>
<td>2 s.h.</td>
</tr>
<tr>
<td>IALL:3117</td>
<td>Ecology and Systematics of Diatoms</td>
<td>2,4 s.h.</td>
</tr>
<tr>
<td>IALL:3123</td>
<td>Prairie Ecology I</td>
<td>2 s.h.</td>
</tr>
<tr>
<td>IALL:3125</td>
<td>Prairie Ecology II</td>
<td>2 s.h.</td>
</tr>
<tr>
<td>IALL:3126</td>
<td>Ornithology</td>
<td>2-4 s.h.</td>
</tr>
<tr>
<td>IALL:3131</td>
<td>Ecology</td>
<td>4 s.h.</td>
</tr>
<tr>
<td>IALL:3141</td>
<td>Environmental Policy</td>
<td>3 s.h.</td>
</tr>
<tr>
<td>IALL:3162</td>
<td>Restoration Ecology</td>
<td>2 s.h.</td>
</tr>
<tr>
<td>IALL:3164</td>
<td>Animal Behavior</td>
<td>2 s.h.</td>
</tr>
<tr>
<td>IALL:3175</td>
<td>Soil Formation and Landscape Relationships</td>
<td>2-4 s.h.</td>
</tr>
</tbody>
</table>

A specific aspect of the upper Midwest's natural history, or techniques for studying natural history; amphibians and reptiles, birds and birding, nature photography, mushrooms and other fungi, Iowa's trees and forests, fish biology, prairies, common algae, common insects, aquatic plants, life in rivers, life in lakes, mosses and liverworts, natural history of Iowa Great Lakes region, field archaeology, scuba diving, astronomy, nature sketching; five-day, nontechnical introductions.

Nature of cultural and environmental evidence in archaeology, how such evidence is used to model past human behavior and land use; emphasis on Iowa prehistory; basic reconnaissance surveying, excavation techniques.

Beginning/intermediate technique and composition in color photography of natural areas, their plants and animals.

Scientific introduction at intermediate level to ecology and evolution of important groups of organisms: algae to vertebrates, different ecological phenomena (e.g., fire and climate change), varying landforms, different ecosystems (e.g., prairies and aquatic systems); emphasis on sustainability with introduction to concepts, issues, and practices; ability to communicate environmental information through a variety of means. Requirements: one general biology course.

How to introduce, explore, and understand Earth systems, processes, and environment; use of experiential, immersive, and place-based approaches to build confidence with subject matter and deepen understanding of landforms, landscapes, climate, geology, and geologic time; for in-service teachers, pre-service teachers, and informal educators.

Development and implementation of laboratory exercises suitable for inclusion in elementary, middle, high school, and community college biology, geology, and environmental courses; exercises built around common organisms and ecosystems in Iowa; animal biology, plant biology, fungi and lichens, aquatic ecology, prairie ecology, wetland ecology, limnology, animal behavior, insect ecology, biology of invertebrates, noninvasive use of living organisms, Project WET; field trips.

Analysis of aquatic ecosystems; emphasis on basic ecological principles; ecological theories tested in the field; identification of common plants and animals. Requirements: ecology course.

Principles of classification and evolution of vascular plants; taxonomic tools and collection techniques; use of keys; emphasis on field and laboratory studies to identify local flowering plants; recognition of major plant families.

Ecology, morphological structure, phylogeny, and taxonomy of freshwater algae based on field material collected; emphasis on genus-level identifications, biodiversity, ecology; habitat visits to lakes, fens, streams, rivers; algal ecology.

Requirements: junior or senior standing.

Identification and classification of common fungi; techniques for identification, preservation, and culture practiced with members of various fungi groups.

Field and laboratory study of freshwater diatoms; techniques in collection, preparation, and identification of diatom samples; study of environmental factors affecting growth, distribution, taxonomic characters; project design and execution, including construction of reference and voucher collections; data organization and analysis.

Recognition of Iowa prairie plants and understanding the systems in which they exist; emphasis on identification of tallgrass prairie flora by sight recognition, family, genus, species, and common names. Requirements: basic familiarity with biology and ecology.

Hands-on learning experiences demonstrating dynamic, human-influenced (anthropogenic) systems which have impacted prairie ecosystems for the past 10,000 years or more; emphasis on identification of tallgrass prairie flora by sight recognition, family, genus, species, and common names. Requirements: general familiarity with biology and ecology.

Biological, ecological, and behavior of birds; emphasis on field studies of local avifauna; group projects with focus on techniques of population analysis and methodology for population studies.

Introduction to the principles of ecology at the population, community, ecosystem levels; field studies of local lakes, wetlands, and prairies used to examine factors that control distributions, interactions, and roles of plants and animals in native ecosystems. Requirements: two semesters of introductory biology.

Theory and practice of environmental policies, including the study of U.S. federal environmental policies with direct and indirect bearings on water issues; focus on policy history, implementation, and effectiveness; how policies interact with each other, how local stakeholders perceive their pros and cons, and linkages between local implementation efforts and regional and large-scale impacts.

Ecological principles for restoration of native ecosystems; establishment (site preparation, selection of seed mixes, planting techniques) and management (fire, mowing, weed control) of native vegetation; evaluation of restorations; emphasis on prairie restoration and wetland vegetation. Requirements: ecology course.

Examination of ecological and evolutionary theories of animal behavior through field studies of animal colonization, courtship, territoriality, predator defense, habitat selection, foraging, mating systems, and parental care. Requirements: two biology courses.

Relationships between soil formation, geomorphology, environment; soil description, classification, geography, mapping, interpretation for land use.
IALL:3176 Glacial Geomorphology 2.4 s.h.
Field-based introduction to glacial environments and processes including the origin of sediments, landforms, and landscapes produced in glacial and associated environments; aeolian (wind) processes, river and lacustrine systems, and mechanisms and chronologies of climate change.

IALL:3200 Introduction to Research and Inquiry 1-3 s.h.
How data transforms to information and ultimately knowledge through scientific investigations; examinations and applications include steps formulating the scientific method using 21st-century data, conditions, and related challenges; deliverables include a thoroughly documented scientific experiment beginning with research questions and hypotheses, recommended methods, and concluding with anticipated results.

IALL:3210 Paleontology Field School 1-3 s.h.
Participants will be introduced to essential methods of field paleontology including prospecting; identification and comparative anatomy; site mapping; and excavation, preservation, and preparation techniques; as well as the process of interpreting fossil finds. The field school includes learning opportunities on the history, development, and current state of the science of paleontology, with a focus on dinosaur paleontology. Requirements: minimum age 18.

IALL:5113 Literature and Multispecies Kinship: Making Kin With(in) Place 1-3 s.h.
Exploration of what it means to build kin within a place, while in a place (specifically NW Iowa); human impact on the planet and inherent demand from climate change to abandon anthropocentrism and fundamentally alter human relationship with environments, places, and species therein; interdisciplinary; readings include texts by ecologists, botanists, climatologists, indigenous writers and theorists, fiction writers and playwrights, poets, and podcasters.

IALL:5164 Animal Behavior 2 s.h.
Examination of ecological and evolutionary theories of animal behavior through field studies of animal coloniality, courtship, territoriality, predator defense, habitat selection, foraging, mating systems, and parental care. Requirements: two biology courses.

IALL:5213 Graduate Independent Study 1-4 s.h.
IALL:5217 Ecology and Systematics of Diatoms 1-4 s.h.