Astronomy, M.S.

Graduate study in physics and astronomy is highly individualized. Each entering graduate student is assigned a faculty advisor, who assists in preparing a plan of study and in guiding the student's progress.

Learning Outcomes

Graduates will:

• understand the foundational principles that transcend many distinct areas, and learn the technical language, problem-solving skills, and training in technical listening and discussion;
• learn and practice advanced discourse in mathematical aspects that translate to physics;
• become familiar with the state-of-the-art experimental tools and equipment in the field;
• promote aspects of creativity and originality in the field and prepare for adaptability to new discoveries;
• learn and practice advanced discourse in experimental and observational aspects, including data and information mining, translating experimental observations to physical principles and vice versa; and
• learn analysis of data and computational skills as well as become familiar with state-of-the-art techniques for data processing.

Requirements

The Master of Science program in astronomy requires a minimum of 30 s.h. of graduate credit. Students must complete a minimum of 30 s.h. of graduate work, including at least 12 s.h. from the courses listed below, at least 3 s.h. numbered 5000 or above, and the remainder in courses numbered at least 4000 or above. At least 24 s.h. must be completed under the auspices of the University of Iowa after admission to the Department of Physics and Astronomy. Seminars do not count toward the minimum of 30 s.h. required for the degree. All students must maintain a g.p.a. of at least 2.75.

Up to one-third of the program of study may be taken in related scientific fields (e.g., meteorology, geology, electrical engineering); selection of such courses is encouraged.

The degree is offered either with or without thesis. The M.S. may be a terminal degree or a step toward a Ph.D. in physics with subprogram and a dissertation in astronomy or astrophysics. In either case the final examination is oral, conducted by a committee of three faculty members.

Students must select at least 12 s.h. from these.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTR:6782</td>
<td>Extragalactic Astronomy</td>
<td>3</td>
</tr>
<tr>
<td>ASTR:6785</td>
<td>The Interstellar Medium</td>
<td>3</td>
</tr>
<tr>
<td>ASTR:6790</td>
<td>Stellar Astrophysics</td>
<td>3</td>
</tr>
<tr>
<td>ASTR:6870</td>
<td>Radiative Processes in Astrophysics</td>
<td>3</td>
</tr>
<tr>
<td>ASTR:6880</td>
<td>High Energy Astrophysics</td>
<td>3</td>
</tr>
<tr>
<td>ASTR:7775</td>
<td>Special Topics in Astrophysics</td>
<td>1-3</td>
</tr>
<tr>
<td>ASTR:7830</td>
<td>Space and Astrophysical Plasma Physics</td>
<td>3</td>
</tr>
</tbody>
</table>

For the M.S. with thesis option, students may take no more than 6 s.h. in PHYS:7992 Individual Critical Study and ASTR:7991 Research: Astronomy; and for those who complete the M.S. without thesis and writing a critical essay, no more than 4 s.h. may be taken in those courses.

Admission

Applicants must meet the admission requirements of the Graduate College; see the Manual of Rules and Regulations on the Graduate College website.

Financial Support

Students qualified for graduate study are encouraged to apply for fellowships and assistantships. Contact the Department of Physics and Astronomy chair.

Career Advancement

Graduates have opportunities for employment in universities, colleges, and research laboratories in government and industry. Astronomy graduates have mastered skills that are readily transferable to a number of fields. They might choose to work in engineering, software development, finance, or consulting.

The Pomerantz Career Center offers multiple resources to help students find internships and jobs.