Computer Science, B.A.

The major in computer science provides students with the necessary training for employment in careers such as software development and information management. It provides good preparation for graduate study in a variety of disciplines.

Students may declare a major in computer science when they are admitted to the University or afterward. They may declare either a Bachelor of Arts or a Bachelor of Science, but if no preference is indicated by a student, the Bachelor of Arts is designated. Students may switch to the Bachelor of Science at any time.

Undergraduates majoring in computer science develop competence in programming principles and methodologies, problem-solving techniques, mathematics, and computer systems. Computer science training is critical for many careers in science, engineering, business, and health care.

Computer science majors are advised at the Academic Advising Center until they have completed 30 s.h., at which point they are assigned a departmental advisor. Students being advised at the Academic Advising Center also can consult with a computer science faculty advisor.

Transfer students who have taken a course approved as equivalent to a required computer science or informatics course are exempt from that course. Transfer course grades are included in the computer science grade-point average.

Students should consult the Department of Computer Science website or visit the department’s office for information about general policies, elective areas, and internships, scholarships, and student groups, such as the University’s chapter of the Association for Computing Machinery (ACM) and Women in Computing Sciences (WiCS).

Advanced Placement

The Computer Science Advanced Placement Program test may be used to satisfy requirements. See Advanced Placement Credit Policy on the Department of Computer Science website.

Learning Outcomes

- Students understand the mathematical, logical, and theoretical foundations of computing.
- Students can analyze and compare the relative merits of alternative software designs and develop high-quality software systems.
- Students understand the fundamental principles of computer organization, system software, networks, and security.
- Students can apply computer science principles to a variety of problems, such as databases, data mining, and various fields of artificial intelligence (AI).
- Students understand social, professional, and ethical issues related to computing.

Requirements

The Bachelor of Arts with a major in computer science requires a minimum of 120 s.h., including at least 41 s.h. of work for the major. Students must maintain a g.p.a. of at least 2.00 in all courses for the major and in all UI courses for the major. A cumulative g.p.a. of at least 2.00 is required for graduation. Students also must complete the College of Liberal Arts and Sciences GE CLAS Core.

The computer science major for the Bachelor of Arts is designed for students who would like to gain considerable knowledge in computer science and have flexibility in choosing electives. Students preparing for careers in the computing field are encouraged to supplement the base requirements with additional computer science courses. The program’s flexibility makes it suitable for combination with other majors.

Coursework for the major includes computer science courses as well as courses in mathematics, statistics, and other supporting disciplines. Work for the major may not be taken pass/nonpass.

Bachelor of Arts students considering a switch to the Bachelor of Science program should choose their GE CLAS Core Natural Sciences courses carefully since students may be able to use the same courses to satisfy the computer science major natural science sequences requirement for the B.S. degree. See “Natural Science Sequences” under Requirements in the B.S. in computer science section of the Catalog.

Students who major in computer science may not also major or minor in computer science and engineering, data science, or informatics.

Departmental Residency Requirement

Students who earn a B.A. in computer science must complete at least five courses (minimum of 15 s.h.) at the University of Iowa from the following: CS:2630 Computer Organization or ECE:3350 Computer Architecture and Organization, CS:2820 Introduction to Software Development, CS:3330 Algorithms, and at least two computer science courses numbered CS:3620-CS:5899, but excluding CS:3910 Informatics Project, CS:3980 Topics in Computer Science I, and CS:4310 Design and Implementation of Algorithms; these courses are requirements for the B.A. in computer science as listed below.

Program Requirements

The B.A. with a major in computer science requires the following coursework. Many courses for the major require a minimum grade of C-minus in prerequisite courses.

Computer Science Core

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS:1210</td>
<td>Computer Science I: Fundamentals</td>
<td>4</td>
</tr>
<tr>
<td>CS:2210</td>
<td>Discrete Structures</td>
<td>3</td>
</tr>
<tr>
<td>CS:2230</td>
<td>Computer Science II: Data Structures</td>
<td>4</td>
</tr>
<tr>
<td>CS:2820</td>
<td>Introduction to Software Development</td>
<td>4</td>
</tr>
<tr>
<td>CS:3330</td>
<td>Algorithms</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Hours: 41-43
CS:3820 Programming Language Concepts 3
One of these:
CS:2630 Computer Organization 4
ECE:3350 Computer Architecture and Organization 3
One of these:
CS:3620 Operating Systems 3
CS:3640 Introduction to Networks and Their Applications 3

Mathematics Core

Calculus I

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>One of these:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH:1550</td>
<td>Engineering Mathematics I: Single Variable Calculus</td>
<td>4</td>
</tr>
<tr>
<td>MATH:1850</td>
<td>Calculus I</td>
<td>4</td>
</tr>
</tbody>
</table>

Calculus II

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>One of these:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH:1560</td>
<td>Engineering Mathematics II: Multivariable Calculus</td>
<td>4</td>
</tr>
<tr>
<td>MATH:1860</td>
<td>Calculus II</td>
<td>4</td>
</tr>
</tbody>
</table>

Linear Algebra/Probability and Statistics

Students who take MATH:2550 Engineering Mathematics III: Matrix Algebra and MATH:2560 Engineering Mathematics IV: Differential Equations can use these courses together to satisfy the linear algebra requirement.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>One of these:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH:2700</td>
<td>Introduction to Linear Algebra</td>
<td>4</td>
</tr>
<tr>
<td>STAT:2020</td>
<td>Probability and Statistics for the Engineering and Physical Sciences</td>
<td>3</td>
</tr>
<tr>
<td>STAT:3120</td>
<td>Probability and Statistics</td>
<td>4</td>
</tr>
</tbody>
</table>

Advanced Computer Science Electives

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>At least 3 s.h. from these:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A computer science course (prefix CS) numbered 3620-5899, except CS:3910, CS:3980, and CS:4310</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A computer science course (prefix CS) numbered 5900 or above, with department approval</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Students may count a maximum of 3 s.h. earned in CS:3990 Honors in Computer Science or Informatics toward the advanced computer science elective requirement.

Early Admission to the Graduate College

Undergraduate computer science students who have 6 s.h. or less to earn toward graduation may apply for early admission to the Graduate College. Early admission allows students in their final undergraduate semester to take courses for graduate credit in addition to the courses they need to complete their bachelor’s degrees.

Combined Programs

B.A./M.C.S.

Qualified computer science undergraduate students who plan to earn the Master of Computer Science degree may apply for the combined Bachelor of Arts/Master of Computer Science program. The combined B.A./M.C.S. program allows students to earn both degrees in five years. The program requires a total of 140 s.h. Students are granted a B.A. when they complete all requirements for the undergraduate degree.

Students in the combined program must complete all requirements for each degree, but may count a maximum of 12 s.h. (four courses) toward both degrees. The four courses must be taken during the fourth year of undergraduate study, after admission to the combined program, and must satisfy degree requirements of both the B.A. and the M.C.S.

If students withdraw from the combined program before completing their bachelor's degree, credit earned in the four courses is counted only toward the undergraduate degree.

A version of the combined program is now available for Grinnell College undergraduate students pursuing a B.A. degree in computer science who want to earn the M.C.S. at the University of Iowa.

Students apply for admission to the combined program during their third year as an undergraduate and enter the program at the beginning of their fourth year. They typically complete the combined program in one year after completing B.A. requirements.

Applicants to the combined program must:

• be enrolled as a B.A. student majoring in computer science at the University of Iowa;
• have completed a minimum of 80 s.h. at the time of admission to the combined program, with at least 30 s.h. earned at the University of Iowa; and
• have a cumulative University of Iowa g.p.a. of at least 3.25 and a g.p.a. of at least 3.25 in the computer science major (computed on math prerequisites and core computer science coursework taken at the University of Iowa).

Applicants must meet the admission requirements of the Graduate College; see the Manual of Rules and Regulations on the Graduate College website.

Students must submit an application for admission to the program, a statement of purpose, three letters of recommendation, and transcripts from all colleges attended; they also must apply to the Graduate College. Graduate Record Examination (GRE) scores are not required. For more detailed information, see Graduate Programs on the Department of Computer Science website.

Honors

Honors in the Major

Students majoring in computer science have the opportunity to graduate with honors in the major. They must maintain a minimum UI cumulative g.p.a. of 3.33 and a minimum major g.p.a. of 3.50; additionally, students complete 4-6 s.h.
of CS:3990 Honors in Computer Science or Informatics and submit an acceptable honors thesis or project. At any time, students can communicate to the computer science professional advisor that they have an honors interest and can have that designation placed on their academic record.

A student is responsible for finding a faculty member willing to supervise the honors project. The student can register for CS:3990 Honors in Computer Science or Informatics under the project supervisor’s name once the faculty member approves the proposed project and a timetable for the work. Once that is accomplished, the student must then communicate with the Department of Computer Science faculty honors director, who changes the student's status to denote the student is pursuing honors in the major. It is not necessary to have declared an honors interest before finding a thesis supervisor and beginning to pursue honors in the major, but the student must be coded as pursuing honors prior to completing the application for degree.

An honors project can be completed in one semester, but it usually takes two semesters to complete. In their final semester, a student must register for CS:3999 Computer Science or Informatics Honors Cohort (0 s.h.). The honors thesis/project must be approved by the thesis supervisor and then submitted to the faculty honors director who will give initial approval that the student can graduate with honors in the major. Final approval is given after final grades are submitted and all requirements are met. For more details regarding project requirements, see Honors in Computer Science on the department’s website.

Students who pursue honors in the major may count a maximum of 3 s.h. in CS:3990 Honors in Computer Science or Informatics toward the advanced computer science elective requirement. Those in the combined B.A./M.C.S. program may register for 4-6 s.h. in CS:5990 Individualized Research or Programming Project instead of CS:3990; this registration allows them to receive graduate credit for the course while satisfying the course requirements to graduate with honors.

University of Iowa Honors Program

In addition to honors in the major, students can pursue honors study and activities through membership in the University of Iowa Honors Program. Visit Honors at Iowa to learn about the University’s honors program.

Membership in the UI Honors Program is not required to earn honors in the computer science major. However, the semester hours earned in CS:3990 Honors in Computer Science or Informatics or CS:5990 Individualized Research or Programming Project can be used to partially satisfy the UI Honors requirement of 12 s.h. of experiential learning coursework.

For more information, contact the Department of Computer Science honors director.

Career Advancement

Computer science graduates work primarily in two market sectors. One sector is the software and computer industry where the words computer science are being used—those in Silicon Valley, among other areas, and that can range from start-ups to giants like Amazon, Google, Facebook, and Microsoft. The other sector allows computer science students to use their technical expertise in fields beyond computer science. Examples would be working as a user experience (UX) designer for a marketing agency or developing software for a financial group; those are computer science majors working in media, health care, the government, and even in law firms. Computer science skills are needed everywhere so students have ample opportunities to find an environment that fits their interest and strengths.

As many as one-third of computer science graduates go into research or elect to pursue graduate studies in computer science, including the University of Iowa’s five-year B.A./M.C.S. program, or pursue other areas where computer science provides a strong foundation.

A recent job placement survey indicates that more than 97 percent of computer science graduates have a job, are continuing education, or are not seeking employment within six months of graduation.

View post-graduation data on the Pomerantz Career Center website that uses University of Iowa placement information to explore what recent computer science alumni are doing that includes median salaries, job titles, companies of employment, and other facts about UI graduates.

The Pomerantz Career Center offers multiple resources to help students find internships and jobs.

Academic Plans

Four-Year Graduation Plan

The Four-Year Graduation Plan is not available to B.A. students majoring in computer science. Students work with their advisors on individual graduation plans.

Sample Plan of Study

Sample plans represent one way to complete a program of study. Actual course selection and sequence will vary and should be discussed with an academic advisor. For additional sample plans, see MyUI.

Computer Science, B.A.

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic Career</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Any Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Effective fall 2022, computer science majors enrolled full-time and with 60 s.h. or more overall earned hours reflected on the UI grade report will be assessed $500 per semester supplemental tuition; the amount is pro-rated for part-time students. For more information see: https://cs.uiowa.edu/supplemental-tuition-effective-fall-2022.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GE CLAS Core: Sustainability</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hours</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>First Year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH:1005</td>
<td>College Algebra</td>
<td>4</td>
</tr>
<tr>
<td>RHET:1030 or ENGL:1200</td>
<td>Rhetoric or The Interpretation of Literature</td>
<td>3 - 4</td>
</tr>
<tr>
<td>GE CLAS Core: Diversity and Inclusion</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>GE CLAS Core: World Languages First Level Proficiency or elective course</td>
<td>4 - 5</td>
<td></td>
</tr>
<tr>
<td>CSI:1600</td>
<td>Success at Iowa</td>
<td>2</td>
</tr>
<tr>
<td>Hours</td>
<td>16-18</td>
<td></td>
</tr>
</tbody>
</table>
Spring
CS:1110 Introduction to Computer Science 3
MATH:1010 Trigonometry 3
ENGL:1200 or RHET:1030 The Interpretation of Literature or Rhetoric 3 - 4
GE CLAS Core: Historical Perspectives 3
GE CLAS Core: World Languages Second Level 4 - 5
Proficiency or elective course

Second Year
Fall
CS:1210 Computer Science I: Fundamentals 4
MATH:1850 Calculus I 4
GE CLAS Core: Social Sciences 3
GE CLAS Core: World Languages Second Level 4 - 5
Proficiency or elective course
Elective course 1

Spring
CS:2210 Discrete Structures 3
MATH:1860 Calculus II 4
GE CLAS Core: World Languages Fourth Level 4 - 5
Proficiency or elective course
Elective course 3
Elective course 2

Third Year
Fall
CS:2230 Computer Science II: Data Structures 4
Major: mathematics core course 3 - 4
GE CLAS Core: Natural Sciences with Lab 3
Elective course 3
Elective course 1

Spring
CS:2630 or ECE:3350 Computer Organization or Computer Architecture and Organization 3 - 4
CS:3330 Algorithms 3
GE CLAS Core: Literary, Visual, and Performing Arts 3
GE CLAS Core: Natural Sciences without Lab 3
Elective course

Fourth Year
Fall
CS:2820 Introduction to Software Development 4
CS:3820 Programming Language Concepts 3
GE CLAS Core: International and Global Issues 3
Elective course 3
Elective course 3

Spring
CS:3640 or CS:3620 Introduction to Networks and Their Applications or Operating Systems 3
Major: advanced computer science elective 3
GE CLAS Core: Values and Culture 3
Elective course 3
Elective course 3

Degree Application: apply on MyUI before deadline (typically in February for spring, September for fall)

Total Hours 125-133

a Sustainability must be completed by choosing a course that has been approved for Sustainability AND for one of these General Education areas: Natural Sciences; Quantitative and Formal Reasoning; Social Sciences; Historical Perspectives; International and Global Issues; Literary, Visual, and Performing Arts; or Values and Culture.
b Enrollment in math courses requires completion of a placement exam.
c GE CLAS Core courses may be completed in any order unless used as a prerequisite for another course. Students should consult with an advisor about the best sequencing of courses.
d Students who have completed four years of a single language in high school have satisfied the GE CLAS Core World Languages requirement. Enrollment in world languages courses requires a placement exam, unless enrolling in a first-semester-level course.
e Students may use elective courses to earn credit towards the total s.h. required for graduation or to complete a double major, minors, or certificates.
f Choose from MATH:2700, STAT:2020, or STAT:3120.
g Students may take CS:2820, CS:3330, and CS:3820 in any order after completing CS:1210, CS:2210, and CS:2230.
h Students may choose a computer science course (prefix CS) numbered 3620-5899 (except CS:3910, CS:3980, CS:4310), or a CS course numbered 5900 or above with department approval. A course used to complete a core requirement cannot also be used as a major elective.
i Please see Academic Calendar, Office of the Registrar website for current degree application deadlines. Students should apply for a degree for the session in which all requirements will be met. For any questions on appropriate timing, contact your academic advisor or Graduation Services.