Biomedical Engineering, B.S.E.

Educational Objectives
The department provides undergraduate students with a contemporary education in a multidisciplinary field of engineering. Its objective is to produce graduates who:

- advance the biomedical field through the responsible analysis and design of devices, systems, processes, and policies that improve human health;
- pursue a wide range of career options, including those in industry, academia, and medicine; and
- collaborate on multidisciplinary teams and become leaders in their chosen field.

Requirements
The Bachelor of Science in Engineering requires a minimum of 128 s.h. of credit. Students must have a g.p.a. of at least 2.00 on all college work used to satisfy degree requirements as well as on all work undertaken at the University of Iowa.

The major in biomedical engineering builds on the foundation provided by the B.S.E. core requirements, preparing students for the challenges and opportunities associated with careers in the profession.

The program has been designed carefully to enable students to satisfy the entrance requirements of the Graduate College. Students whose choice of electives includes a three-course sequence in organic chemistry, an additional biology course, and a biochemistry course may satisfy entrance requirements of the Carver College of Medicine, the College of Dentistry, or the allied health sciences.

All engineering students complete the B.S.E. core requirements for the Bachelor of Science in Engineering.

Biomedical engineering students must choose one of four preapproved focus areas—bioimaging, bioinformatics, biomechanics and biomaterials, or cellular engineering. Each focus area may be designated pre-medicine by taking the necessary focus area electives. Each approved focus area has a group of four required courses and a list of suggested electives.

Focus Areas
Bioimaging Focus Area
Bioimaging represents the acquisition, processing, and visualization of structural or functional images of living systems. Medical imaging and image processing are integral to the extraction of anatomical and biological information from the systems level down to the molecular level with the goal of clinically seeking to reveal, diagnose, or examine diseases, as well as to the study of normal anatomy and physiology.

Bioinformatics Focus Area
Bioinformatics is an interdisciplinary field that develops methods and software tools for modeling and understanding biological data and systems that are typically represented by large amounts of data. Bioinformatics is a combination of computer science, statistics, informatics, and engineering to analyze and interpret biological and genomic data. It is used for the identification of candidate genes to better understand the genetic basis of disease, unique adaptations, and differences between populations.

Biomechanics and Biomaterials Focus Area
Biomechanics is the study of structure and function. It is the application of principles from classical mechanics to problems in biological systems. This focus area emphasizes cardiovascular and/or musculoskeletal biomechanics. The study of biomaterials plays an important role in the design of implants and surgical instrumentation for both cardiovascular and musculoskeletal applications.

Cellular Engineering Focus Area
Cellular engineering involves the application of engineering principles to problems in cellular and molecular biology, particularly as they relate to human health. The goal of this focus area is to equip students with the quantitative tools necessary to understand, manipulate, and control cellular and subcellular processes for a range of biomedical applications, including those related to stem cells, tissue engineering, and regenerative medicine.

For details about focus areas and their requirements, visit biomedical engineering Focus Areas on the department’s website.

Combined Programs
B.S.E./M.S. in Biomedical Engineering
The College of Engineering offers a combined Bachelor of Science in Engineering/Master of Science for biomedical engineering undergraduate students who intend to earn a M.S. in biomedical engineering. Students admitted to this program are allowed to apply three engineering courses (9 s.h.) towards both the B.S.E. and M.S. degree requirements, take an additional 3 s.h. of graduate coursework before completing their B.S.E., and attend and participate in the departmental graduate seminar. Students may begin to work on their coursework or master’s thesis starting as early as the summer following the junior year of undergraduate studies.

Students applying to the B.S.E./M.S. program in biomedical engineering must meet the following criteria at the time of application:

- a minimum of 80 s.h. completed towards their B.S.E. degree,
- a cumulative g.p.a. of 3.50 or higher, and
- identification of a thesis or project mentor.

B.S.E./M.S. in Electrical and Computer Engineering
B.S.E. students majoring in biomedical engineering who are interested in earning a Master of Science in electrical and computer engineering may apply to the combined B.S.E./M.S. program offered by the College of Engineering. The combined program permits students to count a limited amount of credit toward the requirements of both degrees. See the M.S. in electrical and computer engineering in the Catalog.
B.S.E. (Biomechanics and Biomaterials Track)/M.S. in Occupational and Environmental Health (Industrial Hygiene Subprogram)

B.S.E. students majoring in biomedical engineering in the biomechanics and biomaterials track who are interested in earning a Master of Science in occupational and environmental health with an industrial hygiene subprogram may apply to the combined B.S.E./M.S. program offered by the College of Engineering and the College of Public Health. The combined program permits students to count a limited amount of credit toward the requirements of both degrees, enabling them to begin the study of public health before they complete the bachelor's degree. See the M.S. in Occupational and Environmental Health—Undergrad to Grad information on the Department of Occupational and Environmental Health (College of Public Health) website.

Career Advancement

B.S.E. graduates with a major in biomedical engineering may pursue career opportunities in biomedical industries, such as design and development of biomedical instrumentation, diagnostic aids, life support systems, prosthetic and orthotic devices, and man-machine systems; or they may pursue traditional career opportunities in industry, such as those rooted in mechanical or electrical engineering disciplines. Other career options are available in government (Food and Drug Administration, Environmental Protection Agency, National Institutes of Health, Veterans Affairs). Some biomedical engineering graduates elect to continue formal education in engineering, medicine, or law. On average, 93-98 percent of graduates are employed in their field of study or pursuing advanced education within seven months of graduation.

Engineering Career Services develops and promotes experiential education and professional opportunities for students in the College of Engineering. Professional staff coordinate the college's co-op and internship program, engage in employer outreach, and provide opportunities for students to network with employers, including an engineering career fair each semester and other programming related to career development.

Engineering Career Services also offers individual advising and class presentations on résumé and cover letter preparation, job and internship search strategies, interviewing skills, and job offer evaluation.