Mechanical Engineering, M.S.

Research
The mechanical engineering graduate program in the College of Engineering emphasizes in-depth learning and research. In collaboration with faculty across campus, the faculty are currently researching a diverse range of topics within the field. For more information, see the Department of Mechanical Engineering website.

Design and Uncertainty Quantification
The Design and Uncertainty Quantification focus area is concerned with design optimization of complex mechanical systems in the presence of uncertainty. The focus area emphasizes developments of sound theoretical foundation, novel computational methods and algorithms, and modern software tools aimed at creating state-of-the-art engineering design of automotive, aerospace, naval, nuclear, and biomedical systems. Current areas of excellence include artificial muscles and smart materials design, ship hydrodynamics, design sensitivity analysis, uncertainty quantification, and reliability-based design optimization.

Fluid Dynamics
The Fluid Dynamics focus area covers a wide variety of topics with flow of liquids and gases as the common denominator. The graduate program in fluid dynamics emphasizes fundamental principles and applications, and the numerical and experimental techniques used to obtain and analyze fluid flows. Areas of concentration include computational fluid dynamics, experimental fluid dynamics, medical flows, naval hydrodynamics, biologically-inspired air and underwater vehicles, multiphase flows, cavitation and ventilation, and fluid-structure interaction and turbulence, among others.

Heat Transfer and Combustion
The Heat Transfer and Combustion focus area applies to real-world systems in manufacturing and materials processing, propulsion, energy production, and other areas. The graduate program emphasizes fundamental principles and techniques required for experimental and theoretical research. Current areas of research include solidification of materials, metal casting, 3D printing, laser-materials interaction, power plants and propulsion devices such as automobile and aircraft engines, energy conservation and production, energy storage, complex reactive materials, and machine learning in computational modeling and simulation.

Manufacturing and Materials
The Manufacturing and Materials focus area involves fundamental materials processing science, technological advancement in manufacturing applications, and development of new manufacturing processes and new material functions. Current and emerging thrust areas include solidification, metal casting, laser materials processing, micro- and nanofabrication, joining, ultrasonic welding, machining, microstructure evolution, manufacturing process modeling and simulation, artificial muscles, artificial camouflage, smart materials, and material characterizations. These research activities are well supported by federal and state agencies and the manufacturing industry.

Robotics, Controls, and Autonomous Systems
Robotics, Controls and Autonomous Systems (RCAS) are concerned with the modeling, analysis, design, and control of dynamic systems. The graduate program in RCAS emphasizes fundamental principles and techniques of robotics, control theory, and artificial intelligence. Areas of concentration include computational intelligence, dynamic autonomous systems, cyber-physical systems, and networked robotic systems with potential applications in self-driving cars; medical and assistive robots for surgery and rehabilitation; industrial co-robots for human-robot collaboration; and uncrewed aerial, ground, and underwater vehicles.

Solid Mechanics and Multibody Dynamics
Solid Mechanics and Multibody Dynamics are concerned with the behavior of solid materials and flexible bodies, especially their deformation, motion, and stress responses under the action of applied loads. The graduate program in solid mechanics and multibody dynamics emphasizes the theoretical foundations and problem-solving techniques for engineering applications. Current research focuses of the faculty include multiscale mechanics of materials, biomechanics, vehicle dynamics, computational mechanics, multibody dynamics, and optimization.

Requirements
The Master of Science program in mechanical engineering requires a minimum of 30 s.h. of coursework and research, including a minimum of 12 s.h. in mechanical engineering courses (prefix ME) numbered 5000 or above. Students must maintain a g.p.a. of at least 3.00 in graduate work used to satisfy their requirements to earn the degree. The course plan should be approved by their advisor prior to registration each semester. All students choose either a thesis or nonthesis program.

The requirements for the M.S. may be completed within one calendar year. However, students with assistantship duties or other constraints may take up to two calendar years to complete their degree. Students must complete ENGR:7270 Engineering Ethics during their first fall semester in the program. They must register for ME:6191 Graduate Seminar: Mechanical Engineering each fall and spring semester until successful completion of their final examination or thesis defense; credit in these courses does not substitute for regular coursework or research credit hours. For students who select the thesis option, normally 6 s.h., and no more than 9 s.h. of credit for thesis research is counted toward degree requirements in ME:6199 Research: Mechanical Engineering M.S. Thesis.

Thesis students must be successful in their final examination. The exam is administered by a student’s committee, which consists of at least three faculty members, including at least one with a primary appointment in the Department of Mechanical Engineering. The nonthesis option does not include a final exam.

Admission
Applicants must meet the admission requirements of the Graduate College; for detailed information about Graduate
College policies, see the Manual of Rules and Regulations of the Graduate College on the Graduate College website.

Applicants who have earned a baccalaureate or master’s degree in engineering curriculum or in the mathematical or physical sciences are eligible to be considered for admission to graduate study in mechanical engineering. To be considered for regular admission, applicants must have a g.p.a. of at least 3.00 on a 4.00 scale in all previous college-level work.

**Minimum Requirements for Admission**

**Graduate Record Examination (GRE)**

- General Test Requirements
  - Quantitative Reasoning: 80th percentile or above (score=159)
  - Verbal Reasoning: 60th percentile or above (score=152)
  - Analytical Writing: 50th percentile or above (score=4.0)

**International Student Requirements**

Requirements include a minimum TOEFL score of 550 or higher on the paper-based test (PBT) or a score of 81 or higher on the internet-based test (iBT). Newly admitted graduate students who present TOEFL scores below 600 on the PBT or below 100 on the iBT are required to complete an English Proficiency Evaluation on campus before their first registration for classes.

Alternatively, an International English Language Testing System (IELTS) score of 7 is required. IELTS test takers, regardless of score, are required to take an on-campus English Proficiency Evaluation.

There is no conditional admission for graduate students whose TOEFL scores are below 550 on the PBT, below 81 on the iBT, or below 6.5 on the IELTS.

Applicants with lower grade-point averages and/or GRE or TOEFL test scores may be considered for conditional admission under exceptional circumstances. Those admitted conditionally must achieve regular standing within one semester (excluding summer sessions) after admission by attaining a g.p.a. of at least 3.00 on their first 9 s.h. at the University of Iowa. The Graduate College cancels registration for the subsequent semester for students who have not submitted their GRE and/or TOEFL scores by the end of the first semester after admission.

Some of the requirements may be waived in select cases when other components of the application are particularly outstanding. Satisfaction of the requirements does not guarantee admission.

**Applying for Admission**

Refer to the Graduate Admissions website for information about applying for graduate studies.

**Graduate Application Deadlines**

- Applications for fall: January 15 (application deadline), March 1 (admission decision)
- Applications for spring: September 1 (application deadline), October 1 (admission decision)

All requirements must be fulfilled by the respective deadline dates. Applicants who apply after a deadline date must be sponsored by a mechanical engineering faculty member for a deadline waiver.

---

**Financial Support**

Financial support is available to M.S. students, primarily through graduate assistantships in teaching or research from the Department of Mechanical Engineering, IIHR—Hydroscience and Engineering, the National Advanced Driving Simulator, and the University of Iowa Technology Institute. These awards may be made on a semester, academic year, or calendar year basis. Awards and reappointments are competitive and are based on a student’s potential contribution to the teaching and research goals of the department. Students who fulfill their assistantship responsibilities and continue to make satisfactory progress toward their degree objective receive preference in new assistantship awards. Decisions about research and teaching assistantships are made by individual faculty members. Students should direct questions about availability of financial support to faculty members in their primary area of study.

Students with assistantship appointments of one-quarter-time or more must register for a minimum of 9 s.h. during fall and spring semesters until they have completed 30 s.h. of course and research work beyond the baccalaureate degree.

**Career Advancement**

The engineering profession is a foundation for a variety of careers in industry, medicine, law, government, and consulting. On average, 93-98 percent of graduates are employed in their field of study or pursuing advanced education within seven months of graduation.

Engineering Career Services develops and promotes experiential education and professional opportunities for students in the College of Engineering. Professional staff coordinate the college’s co-op and internship program, engage in employer outreach, and provide opportunities for students to network with employers, including an engineering career fair each semester and other programming related to career development.

Engineering Career Services also offers individual advising and class presentations on résumé and cover letter preparation, job and internship search strategies, interviewing skills, and job offer evaluation.