Civil and Environmental Engineering, M.S.

Graduate study in civil and environmental engineering prepares students for professional careers and further study. The principal concentration areas are environmental engineering and environmental science; hydraulics, hydrology, and water resources; structures, mechanics, and materials; sustainable water development; and transportation.

Research and Study Areas

Structures, Mechanics, and Materials

The structures, mechanics, and materials curriculum is designed for students who wish to gain knowledge and skill in the mechanics of solids and structures that they can apply to civil infrastructure systems and other fields. The program concentrates on developing appropriate methodologies for tackling broad, complex issues related to civil infrastructure systems, and on educating engineers in the implementation and application of methodologies to actual engineering projects. Faculty members have expertise in structural engineering, design optimization, solid mechanics, and computational methods.

Transportation Engineering

The transportation engineering curriculum is geared toward students interested in developing specialized knowledge and skills applicable to the diverse set of issues associated with transportation. Faculty members have expertise in traffic engineering, infrastructure management systems, pavement engineering, advanced construction materials, dynamic load and pavement simulation, optimal design, winter highway maintenance, real-time simulation, human factors, intelligent sensors, nondestructive testing, transportation planning, and travel demand modeling.

Water and the Environment

The water and the environment graduate program focuses on both fundamental and applied aspects of environmental systems and processes across a range of scales. The water and environment program offers unique opportunities for students to actively participate in the research, analysis, and design aspects of real-world problems. There are three areas of specialization—environmental engineering and science; hydraulics, hydrology, and water resources; and sustainable water development.

The environmental engineering and science curriculum provides a comprehensive base of coursework and research in the areas of air and water quality management; environmental chemistry and microbiology; natural systems modeling; and processes for water supply, pollution control, and solid and hazardous waste management.

The hydraulics, hydrology, and water resources curriculum is associated with IIHR—Hydroscience & Engineering, a world-renowned research institute, where senior staff members of the institute are professors in the program. IIHR offers unique curriculum opportunities in laboratory and field-scale experimentation, and in mathematical modeling with IIHR's high-speed computer facilities.