Chemical and Biochemical Engineering

Interim Chair

- Jun Wang

Undergraduate major: chemical engineering (BSE)

Graduate degrees: MS in chemical and biochemical engineering; PhD in chemical and biochemical engineering

Faculty: https://engineering.uiowa.edu/cbe/cbe-people

Website: https://engineering.uiowa.edu/cbe

Facilities

Undergraduate Core

Materials Science Laboratory

The Materials Science Laboratory allows students in ENGR:2720 Materials Science to further explore the concepts they learn in the classroom. It is equipped with tensiometers, hardness testers, an Izod impact tester, a contact angle goniometer, and heat treatment/sintering furnaces to characterize and examine the mechanical properties in a variety of materials. Optical microscopes, metallography specimen kits, and crystallography packages are used to facilitate understanding of structure-property relationships.

Required Undergraduate Laboratories

Chemical Engineering Laboratory

The Chemical Engineering Laboratory provides hands-on instruction for undergraduate students in CBE:3150 Thermodynamics/Transport Laboratory and CBE:3155 Chemical Reaction Engineering/ Separations Laboratory. It is equipped for student experimentation in thermodynamics, fluid flow, heat transfer, mass transfer, chemical reaction engineering, and separations. All key equipment pieces in the lab, such as a distillation column, a wiped film evaporator, and multiple heat exchangers are constructed of transparent materials, allowing students to visually inspect the inner workings of this equipment. Additional equipment includes a fluid friction apparatus, a jacketed kettle, and a membrane gas separator. Students study this equipment using state-of-the-art portable analytical equipment such as densitometers, polarimeters, and refractometers.

Additionally, a wide array of small equipment is available to support laboratory projects and demonstrations in chemical engineering courses, and for use by students performing independent investigations or student groups competing in national chemical engineering contests.

Chemical Process Safety Laboratory

The Chemical Process Safety Laboratory is an integral part of CBE:3125 Chemical Process Safety. It is equipped with two MiniFlash automatic flash point testers (closed cup), an advanced reactive system screening tool (ARSST), a minimum ignition energy (MIE) apparatus, a flammability chamber, a modified Hartmann tube, a Hartmann bomb, a liquid conductivity apparatus, a powder chargeability apparatus, a powder volume resistivity apparatus, a Van de Graaff generator, two high impedance electrometers, a field meter, a Faraday cage, and relief sizing software. This equipment is used in a series of experiments to demonstrate principles of flammability, reactivity, explosions, relief valve sizing, and electrostatics relevant to industry.

Biochemical Engineering Laboratory

The Biochemical Engineering Laboratory is an integral part of CBE:3205 Introduction to Biochemical Engineering. It is equipped with two controlled New Brunswick BioFlo/CelliGen 115 bioreactors, electrophoresis apparatus, and a thermostyler. This equipment is used for recombinant DNA experiments and to study the growth and metabolism of microorganisms.

Process Control Laboratory

The Process Control Laboratory is a modern, computer-based instructional laboratory that is integral to CBE:4105 Process Dynamics and Control in Design. The lab consists of computer control of a shell-and-tube heat exchanger and a level-and-flow control process rig with state-of-the art industrial control interfaces.

The Computer Control Laboratory offers an ensemble of learning experiences with the same equipment. Additional laboratories provide instruction in the use of process simulators that provide analogies and better insight into the control process. Topics include determination of the gain and time constants for single-capacitance systems; determination of gain, time constant, and damping factor of second-order processes; determination of open-loop and closed-loop response to step-and-ramp changes in input for single-capacitance and multipacitance processes; approximations of multipacitance systems as first- and second-order processes with dead time; analysis of instrumentation characteristics and transfer functions; tuning and optimization of feedback control parameters (P, PI, PID); system identification through frequency response methods; and determination of system stability.

Experimental arrangements in the lab are simple enough in design to be easily understood, yet complicated enough to help students appreciate system characteristics inherent in industrial processes (e.g., large time lags and error in parameter estimation).

Graduate Facilities and Laboratories

The department offers a wide variety of facilities to support and develop research activities.

Air Pollution Computational, Field, and Laboratory Studies

The department maintains extensive facilities for computational, field, and laboratory studies of air pollution, carbon cycle gases, aerosols, and nanoparticles at the Center for Global and Regional Environmental Research (CGRER). The center occupies 5,000 square feet of lab and office space on the fourth floor of the Iowa Advanced Technology Laboratories.

CGRER houses one R2 ImmersaDesk Portable Large Scale Visualization System and is linked on campus to two more R2 ImmersaDesk units.

The center’s computer laboratory for environmental and spatial data analysis provides numerous Windows and UNIX workstations, sophisticated software packages, and workstations and a file server necessary to run intensive visualization programs. The network backbone is university supported with high-speed wireless throughout. A variety of digital environmental databases and an extensive library of documentation and related references are available. There are 4 Beowulf Linux clusters on site and Linux clusters of 4, 16, 18, and 20 nodes for large computations and data assimilation. CGRER retains 15 TB of redundant storage and 50 TB of total storage; local storage space is scalable and expandable. A variety of software packages and programming languages are available for data analysis and display, including ArcInfo, ArcView, NCAR Graphics, MATLAB, S-PLUS, and Vis5D, as well as geographical information software. The Esri software suite is part of a university-wide site license.
Laboratory and field equipment includes aerosol samplers, including scanning mobility particle sizers for aerosols from 3 nanometer to 1 micron with time resolution to 30 seconds; aerosol particle sizers for aerodynamic measurements of in situ particles with time resolution to 1 second; and varied condensation particle counters for measuring total particle counts. Several hygroscopic tandem differential mobility analyzers are used, as well as varied aerosol generation devices and unique aerosol inlets for relative humidity (RH) and temperature modification and control. Cloud droplet number can be measured in the lab or in the field using a Droplet Measurement Technologies cloud condensation nuclei detector. Advanced computer control of instruments is available through LabVIEW.

Selected instruments are field deployable in a custom air-conditioned trailer. Through collaboration with the IIHR—Hydroscience and Engineering, access to micrometeorology sensors, 1D and 2D elastic and Raman lidar, and gas sensors is available, including multichannel ammonia monitors.

Biochemical Engineering

Biochemical engineering laboratories provide facilities for preparation of biological media and cultivation of organisms as well as for separation and analysis of biomolecules. This equipment includes biological incubators and floor incubator shakers, agitated and airlift bioreactors, light microscopes, autoclaves, Vi-Cell cell counter, thermocycler for polymerase chain reaction (PCR) amplification of DNA, high- and low-speed centrifuges, UV-Vis spectrophotometers, a lyophilizer, biological safety cabinets, and an anaerobic glove box. Phase-contrast and epifluorescence microscopes, gel electrophoresis systems, gas chromatography units with flame ionization and electron capture detectors, and several high performance liquid chromatography systems with refractive index and photodiode array detectors are available for characterization of microorganisms and constituent biomolecules.

Through collaborative research agreements, graduate students also have access to specialized facilities for electron microscopy, large-scale fermentation, protein structure, recombinant DNA research, and tissue culture/hybridoma; the Flow Cytometry Facility; and the High Resolution Mass Spectrometry Facility.

Biomedical Engineering

The biomedical engineering laboratories house particle technology equipment including microemulsion equipment for drug encapsulation, sonicators, benchtop scale spray dryers, laser diffraction particle sizer, zetapotentiometer, DNA preparation equipment, gel electrophoresis apparatus; interfacial stress rheometer, surface tensiometer, UV-Vis/fluorescent plate reader, high performance liquid chromatograph, luminometer, lyophilizer, custom-built simulated cough machine, microscopes, incubators, wet chemistry equipment, rotary shakers, incubated plate shakers, autoclave, centrifuges, and laboratory computers. Cell culture and bacterial culture facilities are housed adjacent to the laboratories.

Graduate students also have access to core research facilities including the Central Microscopy Research Facility, Flow Cytometry Facility, Iowa Institute of Human Genetics, Electron Spin Resonance Facility, Nuclear Magnetic Resonance Facility, High Resolution Mass Spectrometry Facility, and the Center for Gene Therapy.

Computer Facilities

The departmental computer facilities contain a variety of laptops, desktop workstations, and printers. The department is supported by the college's Engineering Technology Center, which maintains a large network of high performance Linux and Windows workstations along with extensive commercial and public domain software. The department also has access to the university's central high performance research computing facility through ITS–Research Services. The University of Iowa also has access to the ACCESS and Blue Waters national supercomputing resources and is a founding member of the Great Lakes Consortium for Petascale Computing. Locally-hosted long-term data storage services are available.

Fundamentals and Applications of Photopolymerization

The Photopolymerization Center was established to advance fundamental understanding of the kinetics and mechanisms of photopolymerizations. To this end, the center provides unique opportunities for collaborations by industrial and academic investigators to explore photopolymerization processes and develop novel applications based on photopolymerizations.

The center provides equipment and instrumentation for the characterization of photopolymerization systems on the molecular, microscopic, and macroscopic levels. Center researchers pursue understanding of fundamental photophysical and photochemical processes involved in the photoinitiation reaction, characterization of high-speed propagation and termination kinetics that lead to the polymer structure, and evaluation of material properties through the course of the photopolymerization reaction. Both radical and cationic photopolymerizations are studied with state-of-the-art experimental techniques to elucidate the complex chemical and physical mechanisms that control the initiation, propagation, and termination of the active centers.