Engineering Courses (College of Engineering) (ENGR)

This is a list of core engineering courses. For more information, see College of Engineering.

ENGR:0000 Engineering Internship 0 s.h.
For engineering students completing a semester-long internship experience while working 35-40 hours a week at a professional company.

ENGR:0001 Engineering Co-op 0 s.h.
Multiple-semester cooperative education experience for students working 35-40 hours a week at a professional company.

ENGR:0002 Engineering Half-Time Internship 0 s.h.
For engineering majors participating in the Cooperative Education and Internship Program and averaging 15-20 hours per week on assignment.

ENGR:0004 Engineering Academic Internship arr.
Academic credit for engineering majors participating in the Cooperative Education and Internship Program. Requirements: for international students—F-1 or J-1 visa, engineering undergraduate standing, full-time internship offer letter in hand (at least 40 hours/week and one semester in length), internship approved by International Student and Scholar Services for F-1 Curricular Practical Training (CPT) or J-1 Academic Training (AT), concurrent registration in approved 3 s.h. distance education or evening course, and preapproval of internship by Engineering Career Services; non-international students may be eligible on case-by-case basis.

ENGR:0006 Engineering Global Internship/Co-op 0 s.h.
For engineering majors participating in the Cooperative Education and Internship Program working on a global assignment.

ENGR:1000 Engineering Success for First-Year Students 1 s.h.
Introduction to engineering student life: electronic resources; keys to and skills for success; coping with adversity; selecting a major; advising; curriculum choices and career objectives; ethics; communication; internships and co-ops; job search skills.

ENGR:1029 First-Year Seminar arr.
Introduction to engineering fields of study; work closely with a faculty member or senior administrator; participation that eases the transition to college-level learning; cutting-edge research taking place in the College of Engineering.

ENGR:1100 Introduction to Engineering Problem Solving 3 s.h.
Development and demonstration of specific problem solving skills; directed project or case study involving actual engineering problems and their solutions.

ENGR:1300 Introduction to Engineering Computing 3 s.h.
Engineering problem solving using computers; introduction to digital computations; problem formulation using a procedural high-level language; structured, top-down program design methodology; debugging and testing; introduction to use of software libraries; examples from numerical analysis and contemporary applications in engineering. Corequisites: MATH:1550.

ENGR:1550 FIRST Tech Challenge - Introduction to Engineering Problem Solving 3 s.h.
Introduction to engineering problem solving and design; projects introduce students to common elements of engineering problem solving and design (e.g., application of organizing principles to describe engineered systems, economic analysis upon which to base decisions, technical presentation and analysis of data), and provides an opportunity for students to apply common elements of problem solving in the solution of engineering problems in context of a structured problem solving and design process. Taught in high schools by state certified teachers.

ENGR:2110 Statics 2-3 s.h.
Vector algebra, forces, couples, moments, resultants of force couple systems; friction, equilibrium analysis of particles and finite bodies, centroids; applications. Prerequisites: MATH:1550. Corequisites: MATH:1560 and PHYS:1611.

ENGR:2120 Electrical Circuits 3 s.h.
Kirchhoff’s laws and network theorems; analysis of DC circuits; first order transient response; sinusoidal steady-state analysis; elementary principles of circuit design; SPICE analysis of DC, AC, and transient circuits. Corequisites: MATH:2560.

ENGR:2130 Thermodynamics 3 s.h.
Basic elements of classical thermodynamics including first and second laws, properties of pure materials, ideal gas law, reversibility and irreversibility, and Carnot cycle; control volume analysis of closed simple systems and open systems at steady state; engineering applications, including cycles. Prerequisites: PHYS:1611 and CHEM:1110. Corequisites: MATH:1560.

ENGR:2510 Fluid Mechanics 4 s.h.
Fluid properties; hydrostatics; transfer of mass, momentum, and energy in control-volume and differential forms; dimensional analysis and similitude; laminar and turbulent flow in conduits; flow past bluff bodies and airfoils; engineering applications; experimental laboratories, computer simulation projects. Prerequisites: MATH:2560 and ENGR:2710. Corequisites: ENGR:2130.

ENGR:2710 Dynamics 3 s.h.
Vector calculus, Newton’s laws, 3D motion of particles and multiparticle systems, 2D motion of rigid bodies applications. Prerequisites: ENGR:2110 and MATH:1550.

ENGR:2720 Materials Science 3 s.h.
Concepts and examples of selection and applications of materials used by engineers; mechanical, electrical, and thermal properties that govern a material’s suitability for particular applications; lectures supplemented by laboratory experiments. Prerequisites: CHEM:1110. Corequisites: MATH:1550.

ENGR:2730 Computers in Engineering 2-3 s.h.
Advanced programming; good software engineering techniques including pseudocode and documentation dynamic data structures, recursive programming, procedural and object-oriented computing, inheritance, and standard template library; C++. Prerequisites: ENGR:1300.

ENGR:2750 Mechanics of Deformable Bodies 3 s.h.
Elementary theory of deformable bodies, stress, strain; axial, transverse, bending, torsion, combined and buckling loads; deflection of beam. Prerequisites: ENGR:2110. Corequisites: MATH:2560.
The Engineering Grand Challenges Program is designed to prepare tomorrow's engineering leaders to solve the grand challenges facing society during the next century; through completion of components of the program, students have the opportunity to engage in research relating to their selected grand challenge, explore interdisciplinary coursework, gain an international perspective, engage in entrepreneurship, and give back to the community through service learning; for students who have been accepted as a scholar to the Engineering Grand Challenges Program and are in the final semester of completing the program requirements. Requirements: acceptance to the Engineering Grand Challenges Program.

ENGR:4012 Engineering Grand Challenges Program Final 0 s.h.
The Engineering Grand Challenges Program is designed to prepare tomorrow's engineering leaders to solve the grand challenges facing society during the next century; through completion of components of the program, students have the opportunity to engage in research relating to their selected grand challenge, explore interdisciplinary coursework, gain an international perspective, engage in entrepreneurship, and give back to the community through service learning; for students who have been accepted to the Engineering Grand Challenges Program and are in the final semester of completing the program requirements. Requirements: acceptance to the Engineering Grand Challenges Program.

ENGR:7270 Engineering Ethics 1 s.h.
Introduction to practical issues associated with being a responsible scientist; topics in responsible conduct of research in engineering and the sciences using case studies, presentations, and discussions with visiting speakers; conforms to mandates set by the Office of the Vice President for Research and the Graduate College to train graduate students and postdoctoral scholars/fellows in responsible conduct of research. Requirements: first-year graduate standing in College of Engineering.

ENGR:7604 Engineering Ethics for Post Docs 0 s.h.
Introduction to practical issues associated with being a responsible scientist; topics in responsible conduct of research in engineering and the sciences using case studies, presentations, and discussions with visiting speakers; conforms to mandates set by the Office of the Vice President for Research and the Graduate College to train graduate students and postdoctoral scholars/fellows in responsible conduct of research. Requirements: new postdoctoral research scholar/fellow in College of Engineering.