Chemical and Biochemical Engineering Courses (CBE)

CBE Courses

This is a list of courses with the subject code CBE. For more information, see Chemical and Biochemical Engineering (College of Engineering) in the Catalog.

CBE:0000 Chemical Engineering Internship/Co-op 0 s.h.
Chemical engineering students participating in the Cooperative Education Program register for this course during work assignment periods; registration provides a record of participation in the program on the student's permanent record. Requirements: admission to Cooperative Education Program.

CBE:1000 CBE Departmental Seminar 1 s.h.
Introduction to the profession and the department; presentations by guest speakers, visits to laboratories and industries.

CBE:1180 First-Year Seminar 1 s.h.
Small discussion class taught by a faculty member; topics chosen by instructor; may include outside activities (e.g., films, lectures, performances, readings, visits to research facilities, field trips). Requirements: first- or second-semester standing.

CBE:2030 Energy and Society 3 s.h.
History of energy development and use throughout the world; how energy has affected the development of human societies; societal impact of engineering advances; current state of energy consumption worldwide, including distribution of energy sources, global variations in consumption, advantages and disadvantages of current energy sources; role of fossil fuel consumption in global climate change, potential scenarios for the future of energy.

CBE:2040 Environment, Energy, and Climate Change 3 s.h.
Traditional concerns (e.g., pollution and conservation of energy resources) with clear, scientific explanations; Earth's dynamic processes and response to natural and human-induced stresses; link between energy and climate; reasons why we need to support reducing emissions and build a clean and sustainable environment.

CBE:2050 Severe and Unusual Weather 3 s.h.
Basic weather concepts behind severe weather phenomena and essential safety information; how weather events cause billions of dollars in damage and thousands of casualties; winter storms can impact half of the nation, paralyzing the transportation network with icy roads and wind driven snow; tornadoes can strike within minutes tearing apart homes; hurricanes can destroy entire communities with strong winds, heavy rain, and deadly storm surge; how understanding severe weather and knowing what to do before, during, and after an event can significantly reduce injury, deaths, and property damage. Same as CEE:2050.

CBE:2105 Process Calculations 3 s.h.
Fundamental principles of chemical process analysis, including material and energy balances for single-unit and multiple-unit processes, analysis of reactive and nonreactive systems, introduction to equations of state, thermodynamics of multiphase systems. Prerequisites: MATH:1550.

CBE:2110 Computational Tools for Chemical Engineers 2 s.h.

CBE:3000 Professional Seminar: Chemical Engineering 1 s.h.
Professional aspects of chemical engineering presented through lectures and discussions by guest speakers, field trips, films, panel discussions. Prerequisites: CBE:2105. Requirements: sophomore standing.

CBE:3020 Applied Statistics for Chemical and Natural Resources Engineering 3 s.h.
Statistical and computational (Python programming) analysis of weather and climate data, univariate and multivariate statistics, hypothesis testing, statistical forecasting, forecast verification, time-series analysis, trend analysis, and principal component analysis.

CBE:3105 Chemical Engineering Thermodynamics 3 s.h.
Applications of thermodynamic principles to chemical and physical processes; prediction of material properties; phase and chemical equilibria applied to mixtures and reacting systems. Prerequisites: ENGR:2130. Corequisites: CBE:2105.

CBE:3109 Fluid Flow 2 s.h.
Fundamentals of fluid flow, including fluid statics, fluid rheology, laminar and turbulent flow in pipes, external flow, flow through packed beds, fluidized beds, pumps and compressors, boundary layer theory, potential flow, dimensional analysis, and Navier Stokes Equations. Corequisites: CBE:2105.

CBE:3113 Heat and Mass Transfer 3 s.h.
Fundamentals of heat and mass transfer including heat exchanger design; conductive, convective, and radiative heat transfer; mechanisms of diffusional and convective mass transfer. Prerequisites: MATH:2560 and CBE:2105. Recommendations: CBE:3109.

CBE:3117 Separations 3 s.h.
Solution of industrial problems including design of distillation, extraction, absorption, adsorption, drying, membrane processes, and mechanical separations. Prerequisites: CBE:2105 and CBE:3105. Corequisites: CBE:3113.

CBE:3120 Chemical Reaction Engineering 3 s.h.
Application of chemical reaction kinetics to design of chemical reactors: batch reactors, mixed flow reactors, plug flow reactors; reversible and irreversible single reactions; parallel, series, and mixed reactions; temperature and pressure effects on reactor design; heterogeneous catalysis; transport in porous catalysts. Prerequisites: MATH:2560. Corequisites: CBE:3105. Recommendations: CBE:3113.
CBE:3125 Chemical Process Safety 3 s.h.

CBE:3150 Thermodynamics/Transport Laboratory 3 s.h.
Error analysis, propagation of errors, experimental design, data collection techniques, report writing, oral presentations, laboratory safety; laboratory investigations of thermodynamics, fluid flow, heat transfer, fluid rheology. Prerequisites: CBE:3105 and CBE:3113. Recommendations: statistics course.

CBE:3155 Chemical Reaction Engineering/Separations Laboratory 3 s.h.

CBE:3205 Introduction to Biochemical Engineering 3 s.h.

CBE:3415 Statistical and Computational Analysis of Weather and Climate Data 3 s.h.
Statistical and computational (Python programming) analysis of weather and climate data, univariate and multivariate statistics, hypothesis testing, statistical forecasting, forecast verification, time-series analysis, principal component analysis, trend analysis, and cluster analysis. Requirements: senior or graduate standing.

CBE:3998 Individual Investigations: Chemical Engineering arr.
Individual projects for chemical engineering undergraduate students, such as laboratory study, engineering design project, analysis and simulation of an engineering system, computer software development, research.

CBE:4105 Process Dynamics and Control in Design 3 s.h.
Theory and application of process dynamics to the design of chemical process control systems; mathematical models of unit operations, transfer functions, feedback and feed-forward control, stability, instrumentation, digital control systems; computer methods, including simulation and commercial software use; laboratory focus on process analysis and design. Prerequisites: MATH:2560 and CBE:2105 and CBE:3109. Corequisites: CBE:3120.

CBE:4109 Chemical Engineering Process Design I 2 s.h.
Engineering economics of process evaluation, including time value of money and bases for cost estimation; preliminary design of chemical process plants using computer-aided engineering. Prerequisites: CBE:3109 and CBE:3113 and CBE:3117. Corequisites: CBE:3120 and CBE:3125.

CBE:4110 Chemical Engineering Process Design II 3 s.h.
Capstone chemical engineering course; design and optimization of chemical process plants; application of process calculations, thermodynamics, kinetics, process synthesis, energy efficiency in separations, heat-exchanger network synthesis, physical property estimation, safety, computer-aided design, unit operations theory, process control, and economics. Prerequisites: CBE:4109. Recommendations: CBE:4105 and CBE:3205.

CBE:4125 Advanced Chemical Process Safety 3 s.h.
Chemical process safety including qualitative and quantitative hazard analysis, risk and consequence analysis, human factors and operator error, incident investigation, management of change procedures, interlocks and safety instrumented systems, layer of protection analysis, dust hazard analysis, and process safety management; project based on laboratory experiments. Prerequisites: CBE:3125.

Microscopy methods for research; all aspects of research, from sample preparation to imaging to data analysis; when to use a particular microscopy procedure; theory, operation, and application of scanning electron microscopy, scanning probe microscopy, laser scanning microscopy, X-ray microanalysis. Requirements: a physical science course. Same as ACB:4156, EES:4156.

CBE:4195 Senior Enriching Activities Seminar 0 s.h.
Aspects of chemical engineering education, including multidisciplinary team skills, understanding the impact of engineering practice locally and globally. Corequisites: CBE:4110. Requirements: completion of enriching activity.

CBE:4410 Sustainable Systems 3 s.h.
New and emerging concepts in sustainable systems design and assessment. Same as CEE:4107.

CBE:4420 Environmental Chemistry 3 s.h.
Principles of general, physical, organic chemistry applied in water and air systems; emphasis on qualitative and quantitative understanding of chemical kinetics and equilibrium; acid-base reactions, complex formation, precipitation, dissolution, and oxidation-reduction reactions; organic nomenclature. Prerequisites: CHEM:1120. Same as CEE:4150.

CBE:4459 Air Pollution Control Technology 3 s.h.
Sources, environmental and health impacts, regulations, modeling of air pollution; processes and alternative strategies for control; global climate considerations. Same as CEE:4159, IGPI:4159.

CBE:5000 Seminar in Chemical and Biochemical Engineering 1 s.h.
Presentation and discussion of recent advances and research in chemical and biochemical engineering by guest lecturers, faculty, students. Requirements: graduate standing.

CBE:5100 Graduate Professional Development Seminar 1 s.h.
Seminar participants work with a faculty member to select and attend eight hours of approved seminars and professional development trainings at the University of Iowa; final meeting of participants is held to share notable seminars; typical seminar series include College of Engineering lectures, departmental and research center graduate seminars, chemical and biochemical engineering professional seminar series, and Center for Teaching and Learning offerings. Requirements: master's standing in chemical and biochemical engineering.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBE:5104</td>
<td>Introduction to Literature Review and Technical Writing</td>
<td>3 s.h.</td>
<td>Review of technical literature, how to contribute to it; produce and present orally a peer-reviewed-journal-quality review article; brainstorming, group writing, research ethics, plagiarism. Recommendations: nonthesis track graduate standing.</td>
</tr>
<tr>
<td>CBE:5105</td>
<td>Introduction to Literature Review and Proposal Writing</td>
<td>3 s.h.</td>
<td>Tools for reviewing literature, skills for critical reading of publications, training in successful proposal writing; experience drafting a proposal that can be used as a starting point for the Ph.D. comprehensive.</td>
</tr>
<tr>
<td>CBE:5110</td>
<td>Intermediate Thermodynamics</td>
<td>3 s.h.</td>
<td>Fundamental principles of thermodynamics as applied to phase equilibrium; properties of fluids, first and second law, variable composition systems, behavior of real fluids, mathematical techniques for solution thermodynamics. Requirements: CBE:3105 or ME:3040 or graduate standing. Same as ME:5210.</td>
</tr>
<tr>
<td>CBE:5115</td>
<td>Transport Phenomena I</td>
<td>3 s.h.</td>
<td>Unified treatment of momentum, mass, energy transport in chemical engineering problems; use of vector and tensor notations in expressing equations of continuity, motion, energy.</td>
</tr>
<tr>
<td>CBE:5120</td>
<td>Data Science in Chemical and Engineering Systems</td>
<td>3 s.h.</td>
<td>Theory and application of numerical methods and data driven algorithms towards understanding chemical processes; scientific computing in Python programming language; numerical solutions to differential equations; nonlinear and constrained optimization; data preprocessing and visualization; dimensionality reduction and clustering; supervised machine learning.</td>
</tr>
<tr>
<td>CBE:5199</td>
<td>Contemporary Topics: Chemical and Biochemical Engineering</td>
<td>arr.</td>
<td>Research techniques for graduate students in chemical and biochemical engineering.</td>
</tr>
<tr>
<td>CBE:5210</td>
<td>Bioseparations</td>
<td>3 s.h.</td>
<td>Unit operations used to isolate and purify biologically derived chemicals, including flocculation, filtration, centrifugation, extraction, adsorption, chromatography, precipitation, crystallization, electrophoresis and cell disruption for intracellular product recovery.</td>
</tr>
<tr>
<td>CBE:5300</td>
<td>Drug Delivery Devices</td>
<td>3 s.h.</td>
<td>Why drug delivery devices are needed and how they are regulated; review of several clinical device categories (inhalation, transdermal, implantable) and preclinical technologies on the horizon.</td>
</tr>
<tr>
<td>CBE:5310</td>
<td>Polymer Science and Technology</td>
<td>3 s.h.</td>
<td>Uses and properties of industrially important polymeric materials; polymer chemistry, polymer structure, characterization, and polymer processing. Prerequisites: CHEM:2210 or CHEM:2230.</td>
</tr>
<tr>
<td>CBE:5315</td>
<td>Polymer Chemistry</td>
<td>3 s.h.</td>
<td>Monomer reactivity and polymerization reactions; step, radical, ionic, and ring-opening polymerizations. Prerequisites: CHEM:2220.</td>
</tr>
<tr>
<td>CBE:5390</td>
<td>Photopolymerization Topics</td>
<td>1 s.h.</td>
<td>Seminars presented by faculty members, research assistants, students.</td>
</tr>
<tr>
<td>CBE:5405</td>
<td>Green Chemical and Energy Technologies</td>
<td>3 s.h.</td>
<td>Strategies for pollution prevention for chemical processes studied at macroscale (industrial sector), mesoscale (unit operations), and microscale (molecular level); case studies. Prerequisites: CBE:2105.</td>
</tr>
<tr>
<td>CBE:5410</td>
<td>Electrochemical Engineering</td>
<td>3 s.h.</td>
<td>Fundamentals of electrochemical engineering; various applications; focus on processes and systems that transform chemical energy into electrical energy (e.g., batteries, fuel cells) and vice versa (e.g., electrolyzers, oxygen generators for medical applications); electrochemical engineering in an increasingly important role in energy, chemical, environmental, and biomedical sectors.</td>
</tr>
<tr>
<td>CBE:5412</td>
<td>Atmospheric Modeling</td>
<td>3 s.h.</td>
<td>Model equations and approaches for atmospheric dynamics and chemistry; numerical methods for radiative, chemical, and aerosol rates; parameterization of subgrid-scale processes; model evaluation and inverse modeling.</td>
</tr>
<tr>
<td>CBE:5415</td>
<td>Satellite Image Processing and Remote Sensing of Atmosphere</td>
<td>3 s.h.</td>
<td>Introduction to principles of atmospheric radiation and techniques for satellite image processing; hands-on experience with data calibration, image registration and enhancement, noise filtering and (supervised and unsupervised) multi-spectral classification of satellite imageries; various satellite sensors used for monitoring of different atmospheric processes and constituents. Same as IGPI:5415.</td>
</tr>
<tr>
<td>CBE:5417</td>
<td>Physical Meteorology and Atmospheric Radiative Transfer</td>
<td>3 s.h.</td>
<td>Physical processes for weather and climate including radiative transfer, cloud and precipitation formation, and atmospheric electricity; theory of scattering by atmospheric particles (e.g., clouds, aerosols, molecules), atmospheric radiative transfer equations, and numerical techniques and tools to solve these equations. Requirements: senior or graduate standing. Same as IGPI:5417.</td>
</tr>
<tr>
<td>CBE:5425</td>
<td>Atmospheric Chemistry and Physics</td>
<td>3 s.h.</td>
<td>Principal chemical and physical processes affecting atmospheric trace gas and pollutant cycles; emphasis on atmospheric photochemistry, aerosol science, major sources, and removal processes. Corequisites: CBE:3120. Same as CEE:5115.</td>
</tr>
<tr>
<td>CBE:5470</td>
<td>Engineering Principles of Drug Delivery</td>
<td>3 s.h.</td>
<td>Fundamental concepts in drug delivery from an engineering perspective: delivery mechanisms; materials and formulations for drug delivery; drug modifications (prodrugs, PEGylation); engineering principles of controlled release and targeted delivery (nanoparticles, microparticles, polymer and lipid based systems); quantitative understanding of drug transport; significance of biodistributions and pharmacokinetic models; toxicity issues; immune responses.</td>
</tr>
<tr>
<td>CBE:5875</td>
<td>Perspectives in Biocatalysis</td>
<td>1-3 s.h.</td>
<td>Applied enzymology, protein design, structure-activity relationships, biosensor technology, microbial transformations, biodegradation of environmental pollutants. Requirements: graduate standing in a participating department supported by the Predoctoral Training Program in Biotechnology. Same as BMB:5875, CEE:5875, CHEM:5875, MIRC:5875, PHAR:5875.</td>
</tr>
</tbody>
</table>
CBE:5998 Individual Investigations: Chemical and Biochemical Engineering arr.
Individual projects for chemical and biochemical engineering graduate students; may include laboratory study, engineering design project, analysis and simulation of an engineering system, computer software development, research. Requirements: graduate standing.

CBE:5999 M.S. Thesis Research: Chemical and Biochemical Engineering arr.
Experimental and/or analytical investigation of an approved topic for partial fulfillment of requirements for M.S. with thesis in chemical and biochemical engineering. Requirements: graduate standing.

CBE:6145 Diffusive Transport 3 s.h.
Diffusive transport of heat, mass, and momentum; phenomenological laws and analogies; analytical and numerical solution techniques; inverse heat conduction; multiphase and multicomponent systems. Prerequisites: ME:5145. Same as ME:6245.

CBE:6415 Advanced Satellite and Remote Sensing of Atmosphere 3 s.h.
Cloud masking and retrieval of cloud properties from satellites, aerosol detection and retrievals, Earth radiation energy budget, land and/or ocean remote sensing, microwave remote sensing, wind retrieval, multi-sensor intercomparison and validation, optimization and inversion theory; hands-on projects.

CBE:6435 Advanced Atmospheric Radiative Transfer 3 s.h.
Theory of scattering by atmospheric particles (e.g., clouds, aerosols, molecules), atmospheric radiative transfer equations, and techniques to solve these equations for solar and terrestrial radiation; numerical experiments with Mie scattering, T-matrix calculation, and radiative transfer models.

CBE:7999 Research: Chemical and Biochemical Engineering Ph.D. Dissertation arr.
Experimental and/or analytical investigation of an approved topic for Ph.D. in chemical and biochemical engineering.