Biostatistics

Head
- Joseph E. Cavanaugh

Graduate degrees: M.S. in biostatistics; Ph.D. in biostatistics
Graduate certificate: biostatistics
Faculty: https://www.public-health.uiowa.edu/biostatistics-faculty-list/
Website: https://www.public-health.uiowa.edu/biostat/

The Department of Biostatistics prepares students for professional and academic careers in biostatistics. Graduates find positions in pharmaceutical, health care, and research companies and institutions; in universities and government agencies; and as consultants. The department also provides training for non-biostatistics students.

Biostatistics faculty members work closely with both clinical and basic science investigators on the University of Iowa health sciences campus in the design and analysis of research projects. The department has research expertise representing a broad array of methodological areas of statistics and biostatistics, including clinical trials, computational statistics, Bayesian modeling and inference, high-dimensional data analysis, statistical genetics and genomics, bioinformatics, informatics, statistical and machine learning, spatial and spatio-temporal modeling, time series analysis, survival data analysis, longitudinal data analysis, network analysis, causal inference, comparative effectiveness studies, model selection, epidemic modeling, and syndromic surveillance. Many of these areas represent current, cutting-edge areas of disciplinary focus in a rapidly evolving field.

In addition to the M.S. and the Ph.D. degrees in biostatistics, the department offers a subprogram for the Master of Public Health (M.P.H.) degree in quantitative methods. See “M.P.H. Subprogram” below.

M.P.H. Subprogram

The Department of Biostatistics offers the quantitative methods subprogram for the Master of Public Health degree. The subprogram is designed to train public health professionals for leadership in the analysis of public health data and the design of studies for public health investigations. See the Master of Public Health in the Catalog.

Programs

Graduate Programs of Study

Majors
- Quantitative methods subprogram for the Master of Public Health degree
- Master of Science in Biostatistics
- Doctor of Philosophy in Biostatistics

Certificate
- Certificate in Biostatistics

Facilities

Department of Biostatistics resources and activities include three centers. The Biostatistics Consulting Center provides opportunities for students to gain valuable experience working with faculty and staff in the health sciences at the University of Iowa. The Clinical Trials Statistical and Data Management Center serves the statistical design, data management, and analysis needs of a variety of multicenter clinical trials, and among those are Clinical Islet Transplantation (CIT) Consortium, Network of Excellence in Neuroscience Clinical Trials (NeuroNEXT), and the Parkinson’s Progress Markers Initiative (PPMI). The Center for Public Health Statistics facilitates the collection, statistical analyses, and dissemination of health data in support of the University’s research, teaching, and service missions and in partnership with the Iowa Department of Public Health.

Courses

Biostatistics Courses

BIOS:4110 General Biostatistics 3 s.h.
Biostatistics and biostatistical computation; biostatistical aspects of health-related problems; clinical trials; statistical issues in big data problems; disease modeling; disease mapping; genetics and epidemiology; brief introduction to survival and longitudinal analyses.

BIOS:4120 Introduction to Biostatistics 3 s.h.
Application of statistical techniques to biological data including descriptive statistics, probability and distributions, sampling distributions, nonparametric methods, hypothesis tests, confidence intervals, analysis of categorical data, and simple linear regression; designed for non-biostatistics majors and M.P.H. students. Requirements: college algebra or ALEKS score of 65% or higher.

BIOS:4710 Biostatistical Methods Laboratory 1 s.h.
Computational aspects of one-sample and two-sample problems; analysis of frequency data, linear regression, and correlation analysis; examples using these computational methods in public health. Offered fall semesters. Prerequisites: STAT:3200 and STAT:2010.

BIOS:5120 Regression Modeling and ANOVA in the Health Sciences 3 s.h.
Continuation of BIOS:4120; correlation, simple and multiple linear regression, confounding, interactions, model selection, single and multiple factor ANOVA (analysis of variance) models, contrasts, multiple comparisons, nested and block designs, and an introduction to mixed models; designed for non-biostatistics majors. Offered spring semesters and summer sessions. Prerequisites: BIOS:4120. Same as IGPI:5120, STAT:5610.

BIOS:5310 Research Data Management 3 s.h.
Introduction to data management techniques and problems encountered in gathering and processing data from biomedical investigations; introduction to SAS, techniques taught in SAS; designed for non-biostatistics majors. Offered fall and spring semesters. Recommendations: prior programming experience with C, C++, Python, Java, or other. Same as IGPI:5310, STAT:5810.

BIOS:5510 Biostatistical Computing 2 s.h.
Introduction to computer programming using SAS and R statistical software packages; programming language syntax, constructs, procedures, and techniques for data management, data analysis, and statistical programming commonly encountered in biostatistics; designed for first-year biostatistics majors. Offered fall semesters. Corequisites: BIOS:5710. Same as IGPI:5510.
BIOS:5710 Biostatistical Methods I 4 s.h.
Probability distributions, moments, estimation, parametric
and nonparametric inference for one-sample and two-sample
problems, analysis of frequency data; emphasis on use of
computers; designed for first-year biostatistics majors. Offered
fall semesters. Requirements: two semesters of calculus.
Same as IGPI:5710.

BIOS:5720 Biostatistical Methods II 4 s.h.
Continuation of BIOS:5710; multi-factor ANOVA (analysis of
variance), multiple comparisons, orthogonal contrasts,
linear regression and correlation, regression diagnostics and
remedial measures, model selection, and mixed models;
designed for first-year biostatistics majors. Offered spring
semesters. Prerequisites: BIOS:5710. Requirements: one
semester of linear algebra. Same as IGPI:5720.

BIOS:5730 Biostatistical Methods in Categorical
Data 3 s.h.
Estimation of proportions, rates, risks, relative risks, and
odds ratios; Mantel-Haenszel method; logistic regression
(including ordinal logistic regression and multi-category
nominal logistic regression); Poisson regression and negative
binomial regression; methods for correlated or clustered
data (conditional logistic regression, generalized estimating
equations, and mixed effects models); special topics include
an introduction to generalized linear models and likelihood-
based inferential techniques in this framework; designed
for first-year biostatistics majors. Offered spring semesters.
Prerequisites: BIOS:5510 and BIOS:5710. Corequisites:
BIOS:5720. Same as IGPI:5730.

BIOS:6110 Applied Categorical Data Analysis 3 s.h.
Analysis of proportions, risk measures, and measures of
association; Mantel-Haenszel method; logistic regression
for binary responses and for matched data; logistic regression
for multi-category responses; analysis of count data (Poisson
regression and negative binomial regression); analysis
of clustered data (generalized estimating equations and
mixed effects models); special topics include
the application of propensity score methods; designed
for non-biostatistics majors. Offered fall semesters. Prerequisites:
BIOS:5120. Same as IGPI:6110.

BIOS:6210 Applied Survival Analysis 3 s.h.
Nonparametric, parametric, and semi-parametric methods
for time-to-event data; types of censoring; Kaplan-Meier
estimation; Cox proportional hazards models, including
methods for assessing adequacy of the proportional hazards
assumption; time varying covariates; sample size calculations
for comparison of two or more groups; focus on analysis of
real data sets and examples using statistical software. Offered
spring semesters. Prerequisites: BIOS:5120 or BIOS:5720.
Same as IGPI:6210.

BIOS:6310 Introductory Longitudinal Data
Analysis 3 s.h.
Introduction to statistical models and estimation methods
for outcome variables (normal and non-normal) clustered or
measured repeatedly in time or space; focus on applications
and computer software methods for ANOVA based methods,
 hierarchical linear models, linear mixed models, correlated
regression models, generalized estimating equations, and
generalized linear mixed models. Offered fall semesters.
Prerequisites: BIOS:5120 or STAT:3200. Same as IGPI:6310,
STAT:6550.

BIOS:6420 Survey Design and Analysis 3 s.h.
Methodological issues regarding design, sampling approach,
implementation, analysis, and interpretation of surveys and
questionnaires in public health research. Offered spring
semesters of even years. Prerequisites: EPID:4400 and
BIOS:5120. Same as EPID:6420.

BIOS:6610 Statistical Methods in Clinical Trials 3 s.h.
Survey of statistical methods commonly used in clinical
trials; primary focus on methodologic perspective for
the design, conduct, analysis, and interpretation of all
phases of clinical trials; logistical and operational aspects of
conducting multisite clinical trials; designed for biostatistics
majors. Offered spring semesters. Prerequisites: BIOS:5720.
Requirements: familiarity with SAS and R programming. Same
as IGPI:6610.

BIOS:6650 Causal Inference 3 s.h.
Concepts of causal inference, counterfactuals, confounding,
causal graphs, internal/external validity, heterogeneity
of treatment effect; methods covered include propensity score
matching (optimal pair, multiple control and full matching;
nearest, exact, fine, balance, and risk set matching) and
stratification; covariate balance checks; sensitivity analysis;
inverse probability of treatment weighted estimation; doubly
robust estimators; mediation analysis; marginal structural
models. Offered fall semesters of odd years. Prerequisites:
BIOS:5720 and BIOS:5730 and ((STAT:4100 and STAT:4101) or
(STAT:5100 and STAT:5101)). Same as IGPI:6650.

BIOS:6720 Statistical Machine Learning for Biomedical
and Public Health Data 3 s.h.
Statistical machine learning techniques for analysis of
biomedical and public health data; methodology and
application of unsupervised learning, supervised learning
for regression and classification, ensemble learning, model
assessment, feature selection, and high-dimensional
inference. Prerequisites: BIOS:5510 and BIOS:5720 and
(STAT:4100 and STAT:4101) or (STAT:5100 and STAT:5101).
Requirements: BIOS:5510 with topic of programming with R.

BIOS:6810 Bayesian Methods and Design 3 s.h.
Theory and application of Bayesian methods in biomedical
research; foundations of Bayesian statistics including decision
theory, study design, model development, inference and
implementation of computational algorithms; designed for
biostatistics majors. Offered spring semesters of odd years.
Prerequisites: BIOS:5510 and BIOS:5720 and BIOS:5730 and
((STAT:4100 and STAT:4101) or (STAT:5100 and STAT:5101)).
Same as IGPI:6810.

BIOS:7110 Theory of Biostatistics I 4 s.h.
Intermediate-level treatment of the theoretical foundation
of mathematical statistics including conditional distributions,
models, prediction, sufficiency, exponential families, methods
of estimation and performance of estimators, uniform
minimum variance unbiasedness, information inequalities,
likelihood theory, confidence intervals, asymptotic theory
and its applications; designed for biostatistics majors. Offered
fall semesters. Prerequisites: (BIOS:5720 and STAT:5100 and
STAT:5101) or (STAT:4100 and STAT:4101).
BIOS:7120 Theory of Biostatistics II 4 s.h.
Asymptotic likelihood theory for estimation and hypothesis testing with and without nuisance parameters; generalized linear models; numerical optimization; model and data deficiencies, (e.g., misspecified models, missing data, robust variance estimation); alternative likelihoods (e.g., profile, conditional, marginal, pseudo, partial, quasi likelihoods); EM algorithm; topics may include bootstrap, rank-based methods, propensity scores, double-robust estimators, generalized linear mixed models and numerical quadrature methods; designed for biostatistics majors. Offered spring semesters. Prerequisites: BIOS:7110.

BIOS:7210 Survival Data Analysis 3 s.h.
Types of censoring and truncation; survival function estimation; parametric inference using exponential, Weibull, and accelerated failure time models; nonparametric tests; sample size calculation; Cox regression with stratification and time-dependent covariates; regression diagnostics; competing risks; topics may include analysis of correlated survival data and/or recurrent events; designed for biostatistics and statistics majors. Offered fall semesters. Prerequisites: BIOS:5720 and ((STAT:4100 and STAT:4101) or (STAT:5100 and STAT:5101)). Same as IGPI:7210, STAT:7570.

BIOS:7230 Advanced Clinical Trials 3 s.h.
Modules that address advanced topics and issues encountered when conducting a clinical trial; discussions of recent publications and FDA guidance documents dealing with current topics in clinical trials. Prerequisites: (STAT:4101 or STAT:5101) and BIOS:6610. Requirements: familiarity with SAS and R programming.

BIOS:7240 High-Dimensional Data Analysis 3 s.h.
Analysis of high-dimensional data with emphasis on use of penalized regression models such as lasso, elastic net, minimax concave penalty (MCP), smoothly clipped absolute deviation (SCAD), and group lasso; large-scale hypothesis testing and false discovery rate estimation; inference for penalized likelihoods. Prerequisites: (STAT:4101 or STAT:5101) or (STAT:5100 and STAT:5101) and BIOS:5720. Requirements: BIOS:5510 with section subtitle of programming with R.

BIOS:7270 Scholarly Integrity in Biostatistics 1 s.h.
Responsible conduct of research training; emphasis on issues of particular relevance to biostatisticians including authorship, communication, student/mentor relationships, plagiarism, fabrication and falsification of data, bias, Type I/II errors, reproducible research, data confidentiality and security, conflicts of interest, human/animal subjects. Requirements: graduate standing in biostatistics.

BIOS:7310 Longitudinal Data Analysis 3 s.h.
Statistical models and estimation methods for outcome variables (normal and non-normal) clustered or measured repeatedly in time or space; includes ANOVA based methods, hierarchical linear models, linear mixed models, error structures, generalized estimating equations, and generalized linear mixed models; may include Bayesian approaches; designed for biostatistics and statistics majors. Offered spring semesters of odd years. Prerequisites: (BIOS:5720 and STAT:4100 and STAT:4101) or (STAT:5100 and STAT:5101). Same as IGPI:7310.

BIOS:7330 Advanced Biostatistical Computing 3 s.h.
Advanced topics in biostatistical computing and large or complicated data/models; matrix decomposition, optimization, Bayesian computing, parallel programming, working with campus high performance computing (HPC) resources; topics are explored in R, including package development and efficient R code. Prerequisites: MATH:2700 and BIOS:5510 and STAT:4101. Requirements: BIOS:5510 with section subtitle of programming with R.

BIOS:7410 Analysis of Categorical Data 3 s.h.
Models for discrete data, distribution theory, maximum likelihood and weighted least squares estimation for categorical data, tests of fit, models selection. Offered spring semesters. Prerequisites: (BIOS:5720 or STAT:5200) and (STAT:5101 or STAT:4101). Same as STAT:7510.

BIOS:7500 Preceptorship in Biostatistics arr.
Work experience using knowledge and skill acquired in classroom; arranged in conjunction with ongoing departmental or collegiate activities or with governmental agencies or private industry; preparation of prospectus and presentation of research results in a department seminar.

BIOS:7600 Advanced Biostatistics Seminar 0-3 s.h.
Current topics: supervised experience in reading and interpreting biostatistical literature. Same as IGPI:7600.

BIOS:7604 Scholarly Integrity in Biostatistics for Postdocs 0 s.h.
Responsible conduct of research training; emphasis on issues of particular relevance to biostatisticians and statisticians including authorship, communication, student/mentor relationships, plagiarism, fabrication and falsification of data, bias, Type I/II errors, reproducible research, data confidentiality and security, conflicts of interest, human/animal subjects. Requirements: postdoctoral research scholar/ fellow standing in biostatistics or statistics.

BIOS:7700 Problems/Special Topics in Biostatistics arr.
Didactic material in biostatistics; may include tutorials, seminars, faculty-directed independent work (e.g. literature search, project, short research project).

BIOS:7800 Independent Study in Biostatistics arr.
In-depth pursuit of an area of special interest in biostatistics requiring substantial creativity and independence.

BIOS:7850 Research in Biostatistics arr.
Research that may lead to a dissertation.