Physics, B.S.

Learning Outcomes
Physics majors will be able to:

• demonstrate competency in applying the basic laws of physics in classical and quantum mechanics, electromagnetism, thermodynamics, and statistical physics;
• solve complex, real-world problems using the principles of physics; and
• demonstrate competency in using basic instrumentation and in analyzing the data obtained.

Requirements
The Bachelor of Science with a major in physics requires a minimum of 120 s.h., including at least 58 s.h. of work for the major (minimum of 42 s.h. in physics plus 16 s.h. in supporting coursework). Students must maintain a g.p.a. of at least 2.00 in all courses for the major and in all UI courses for the major. They also must complete the College of Liberal Arts and Sciences GE CLAS Core.

Students take calculus and linear algebra in addition to physics courses, which include laboratories, and the department encourages them to do additional work.

Students who want to earn a double major in physics and astronomy must choose their coursework carefully; see "Double Major in Physics and Astronomy" below.

The B.S. with a major in physics requires the following courses or their equivalents. Many upper-level physics courses have prerequisites; students should consult their advisors when choosing courses numbered 3000 or above.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>Labs</td>
<td></td>
<td>6-7</td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td>36-41</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>58-64</td>
</tr>
</tbody>
</table>

Mathematics

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>All of these:</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>MATH:1850 & MATH:1860</td>
<td>Calculus I-II</td>
<td></td>
</tr>
<tr>
<td>MATH:2700</td>
<td>Introduction to Linear Algebra</td>
<td></td>
</tr>
<tr>
<td>MATH:2850</td>
<td>Calculus III</td>
<td></td>
</tr>
</tbody>
</table>

Laboratories

Students who choose PHYS:3850 Electronics as one of their two required laboratory courses are advised to take it before they take PHYS:3756 Intermediate Laboratory.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>This course:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS:3756</td>
<td>Intermediate Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>One of these:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS:3850</td>
<td>Electronics</td>
<td>4</td>
</tr>
</tbody>
</table>

Other Required Courses

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>One of these sequences:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS:1611-1612</td>
<td>Introductory Physics I-II</td>
<td>8</td>
</tr>
<tr>
<td>PHYS:1701 & PHYS:1702 & PHYS:2703</td>
<td>Physics I-II - Physics III (strongly preferred)</td>
<td>12</td>
</tr>
<tr>
<td>All of these:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS:2704</td>
<td>Physics IV</td>
<td>4</td>
</tr>
<tr>
<td>PHYS:3710</td>
<td>Intermediate Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>PHYS:3730</td>
<td>Statistical Physics</td>
<td>3</td>
</tr>
<tr>
<td>PHYS:3741-3742</td>
<td>Introduction to Quantum Mechanics I-II</td>
<td>6</td>
</tr>
<tr>
<td>PHYS:3811-3812</td>
<td>Electricity and Magnetism I-II</td>
<td>6</td>
</tr>
<tr>
<td>Two of these:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS:3850</td>
<td>Electronics (may not be taken if used for laboratories requirement)</td>
<td>4</td>
</tr>
<tr>
<td>PHYS:4720</td>
<td>Introductory Optics</td>
<td>3</td>
</tr>
<tr>
<td>PHYS:4726</td>
<td>Electro Optics</td>
<td>3</td>
</tr>
<tr>
<td>PHYS:4728</td>
<td>Introductory Solid State Physics</td>
<td>3</td>
</tr>
<tr>
<td>PHYS:4731</td>
<td>Plasma Physics I</td>
<td>3</td>
</tr>
<tr>
<td>PHYS:4740</td>
<td>Elementary Particles and Nuclear Physics</td>
<td>3</td>
</tr>
<tr>
<td>PHYS:4750</td>
<td>Advanced Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>PHYS:4761</td>
<td>Mathematical Methods of Physics I</td>
<td>3</td>
</tr>
<tr>
<td>PHYS:4762</td>
<td>Mathematical Methods of Physics II</td>
<td>3</td>
</tr>
<tr>
<td>PHYS:4820</td>
<td>Optical Signal Processing</td>
<td>3</td>
</tr>
<tr>
<td>PHYS:4860</td>
<td>Computational Physics</td>
<td>3</td>
</tr>
<tr>
<td>ASTR:3771</td>
<td>Introduction to Astrophysics I</td>
<td>3</td>
</tr>
<tr>
<td>ASTR:3772</td>
<td>Introduction to Astrophysics II</td>
<td>3</td>
</tr>
<tr>
<td>ASTR:4770</td>
<td>Radio Astronomy</td>
<td>3</td>
</tr>
<tr>
<td>ASTR:4850</td>
<td>Astronomical Laboratory</td>
<td>3</td>
</tr>
</tbody>
</table>

Undergraduate majors who plan to pursue graduate study are advised to go as far as they can beyond the minimum requirements listed above, including further work in mathematics. In planning this work, they should be guided by the College of Liberal Arts and Sciences maximum hours rule: Students earning a B.S. may apply a maximum of 56 s.h. earned in one department to the minimum 120 s.h. required for graduation, whether or not the coursework is accepted toward requirements for the major; students who earn more than 56 s.h. from one department may use the additional semester hours to satisfy requirements for the major (if the department accepts them), and the grades they earn become part of their grade-point average; but they cannot apply the additional semester hours to the minimum 120 s.h. required for graduation.
Students earning a B.S. with a double major in physics and astronomy may count more than 56 s.h. earned in the Department of Physics and Astronomy to the 120 s.h. required for graduation, but they must earn at least 56 s.h. in coursework outside the department in order to graduate.

Teacher Licensure

Students interested in teaching in elementary and/or secondary schools should seek admission to the Teacher Education Program (TEP) in the College of Education.

To qualify for licensure in secondary teaching, students in the TEP complete a degree in education as well as a related College of Liberal Arts and Sciences degree. See Teacher Education Program Application and Admission on the College of Education website for details on requirements and deadlines for applying to the College of Education and about TEP choices of majors leading to licensure.

Double Major in Physics and Astronomy

Students working toward a Bachelor of Science with a double major in physics and in astronomy must complete all requirements for both majors and must earn a minimum of 56 s.h. outside the Department of Physics and Astronomy in order to graduate. Students interested in earning a double major should consult with their advisors. See Requirements for a Bachelor's Degree on the College of Liberal Arts and Sciences website.

Combined Programs

B.S./M.S. in Business Analytics (Career Subprogram)

Students majoring in physics who are interested in earning a master's degree in business analytics with a career subprogram may apply to the combined B.S./M.S. program offered by the College of Liberal Arts and Sciences and the Tippie College of Business. The program enables students to begin the study of business analytics before they complete their bachelor's degree. Students are able to complete both degrees in five years rather than six.

Separate application to each degree program is required. Applicants must be admitted to both programs before they may be admitted to the combined degree program. For information about the business analytics program, see the M.S. in business analytics (career) in the Tippie College of Business section of the Catalog.

B.S./M.S. in Finance

Students majoring in physics who are interested in earning a master's degree in finance may apply to the combined B.S./M.S. program offered by the College of Liberal Arts and Sciences and the Tippie College of Business. The program enables students to begin the study of finance before they complete their bachelor's degree. Students are able to complete both degrees in five years rather than six.

Separate application to each degree program is required. Applicants must be admitted to both programs before they may be admitted to the combined degree program. For information about the finance program, see the M.S. in finance (Tippie College of Business) section of the Catalog.

Honors

Honors in the Major

Students majoring in physics have the opportunity to graduate with honors in their major. They must maintain a University of Iowa g.p.a. of at least 3.33. They must earn 6-8 s.h. in PHYS:4999 Undergraduate Research Undergraduate Research during their junior and senior years and conduct an investigation under the guidance of a faculty member. Students must present a written report of their research (honors thesis) and describe their research results at a departmental seminar.

University of Iowa Honors Program

In addition to honors in the major, students have opportunities for honors study and activities through membership in the University of Iowa Honors Program. Visit Honors at Iowa to learn about the University's honors program.

Membership in the UI Honors Program is not required to earn honors in the physics major.

Academic Plans

Four-Year Graduation Plan

The following checkpoints list the minimum requirements students must complete by certain semesters in order to stay on the University's Four-Year Graduation Plan. Courses in the major are those required to complete the major; they may be offered by departments other than the major department.

Before the third semester begins: calculus II and physics II
Before the fifth semester begins: physics III-IV, introduction to linear algebra, calculus III, and up to two more courses in the major
Before the seventh semester begins: two to four more courses in the major and at least 90 s.h. earned toward the degree
Before the eighth semester begins: two or three more courses in the major
During the eighth semester: enrollment in all remaining coursework in the major, all remaining GE CLAS Core courses, and a sufficient number of semester hours to graduate

Sample Plan of Study

Sample plans represent one way to complete a program of study. Actual course selection and sequence will vary and should be discussed with an academic advisor. For additional sample plans, see MyUI.

Physics, B.S.

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic Career</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Any Semester</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Research: students are strongly encouraged to be active participants in research within the department.
First Year

Fall
- PHYS:1701 Physics I^a 4
- MATH:1850 Calculus I^{a, b} 4
- RHET:1030 Rhetoric^c or ENGL:1200 The Interpretation of Literature 3 - 4
- GE CLAS Core: Social Sciences^c 3
- CSI:1600 Success at Iowa 2
- Hours 16-17

Spring
- PHYS:1702 Physics II^a 4
- MATH:1860 Calculus II 4
- GE CLAS Core: Diversity and Inclusion^c 3
- ENGL:1200 or RHET:1030 The Interpretation of Literature or Rhetoric 3 - 4
- Hours 14-15

Second Year

Fall
- PHYS:2703 Physics III 4
- GE CLAS Core: Values and Culture^c 3
- MATH:2700 Introduction to Linear Algebra 4
- GE CLAS Core: World Languages First Level Proficiency or elective course^d 4 - 5
- Hours 15-16

Spring
- PHYS:2704 Physics IV 4
- PHYS:3710 Intermediate Mechanics 3
- MATH:2850 Calculus III 4
- GE CLAS Core: World Languages Second Level Proficiency or elective course^d 4 - 5
- Hours 15-16

Third Year

Fall
- PHYS:3811 Electricity and Magnetism I 3
- PHYS:3741 Introduction to Quantum Mechanics I 3
- GE CLAS Core: Historical Perspectives^c 3
- GE CLAS Core: World Languages Second Level Proficiency or elective course^d 4 - 5
- Elective course^e 1 - 3
- Hours 14-17

Spring
- PHYS:3742 Introduction to Quantum Mechanics II 3
- PHYS:3812 Electricity and Magnetism II 3
- PHYS:3850 Electronics^f 4
- GE CLAS Core: World Languages Fourth Level Proficiency or elective course^d 4 - 5
- Hours 14-15

Fourth Year

Fall
- PHYS:3730 Statistical Physics 3
- PHYS:3756 Intermediate Laboratory^f 3
- Major: upper-level physics course 3
- GE CLAS Core: Literary, Visual, and Performing Arts^c 3
- Elective course^e 3
- Hours 15

Spring
- GE CLAS Core: International and Global Issues^c 3
- Major: upper-level physics course 3
- Elective course^e 3
- Elective course^e 3
- Elective course^e 3
- Degree Application: apply on MyUI before deadline (typically in February for spring, September for fall)
- Hours 15
- Total Hours 118-126

^a Fulfills a major requirement and may fulfill a GE requirement.

^b Enrollment in math courses requires completion of a placement exam.

^c GE CLAS Core courses may be completed in any order unless used as a prerequisite for another course. Students should consult with an advisor about the best sequencing of courses.

^d Students who have completed four years of a single language in high school have satisfied the GE CLAS Core World Languages requirement. Enrollment in world languages courses requires a placement exam, unless enrolling in a first-semester-level course.

^e Students may use elective courses to earn credit towards the total s.h. required for graduation or to complete a double major, minors, or certificates.

^f Students who choose PHYS:3850 as one of their two required laboratory courses are advised to take it before they take PHYS:3756 Intermediate Laboratory.

^g Please see Academic Calendar, Office of the Registrar website for current degree application deadlines. Students should apply for a degree for the session in which all requirements will be met. For any questions on appropriate timing, contact your academic advisor. For more information visit http://commencement.uiowa.edu/. If applicable search for "Early and Late Participation" to find this page (e.g. walk in graduation ceremony in May, degree conferral in August).

Career Advancement

Physics graduates have mastered skills that are readily transferable to a number of fields. They might choose to work in research, engineering, software development, teaching, finance, biomedical research, or consulting.

The degree provides preparation for careers in industry, employment in research laboratories, and graduate study in physics and related sciences.

About 70 percent of physics and astronomy graduates go on to graduate school. With help from the department’s in-house recruiting office, they win acceptance to some of the best graduate programs in the country.

The Pomerantz Career Center offers multiple resources to help students find internships and jobs.