Geographical and Sustainability Sciences

Chair
• David A. Bennett

Director, Undergraduate Studies
• Marc A. Linderman

Director, Graduate Studies
• Eric Tate

Undergraduate major: geography (B.A., B.S.)
Undergraduate minors: geographic information science; geography
Undergraduate certificate: geographic information science
Graduate degrees: M.A. in geography; Ph.D. in geography
Faculty: https://clas.uiowa.edu/geography/people/faculty
Website: https://clas.uiowa.edu/geography/

The importance of geographical and sustainability sciences is rooted in the complexity of social and environmental problems. We live on a dynamic planet, one that is constantly changing in response to human and natural processes that are highly interconnected. Geographers study the interactions of people and their environment to better understand these intricately related processes. At the University of Iowa, the department teaches and conducts research on human and natural systems and how interactions between these systems shape the world we live in. Cutting edge technologies, such as geographic information systems (GIS), satellite imagery, and Global Positioning System (GPS), are used to help inform decision making at geographic scales and to analyze and visualize geographic processes.

The Department of Geographical and Sustainability Sciences offers undergraduate programs leading to a Bachelor of Arts or Bachelor of Science degree. Undergraduate students select from three tracks: environmental studies, geographic information science (GIScience), and health and society. Each track requires introductory and upper-level geography and sustainability courses, as well as course work from other departments. The department also offers a minor in geography and a minor in geographic information science. It administers the interdisciplinary environmental policy and planning major and collaborates with other departments to offer the undergraduate Certificate in Social Science Analytics, Sustainability, and Wind Energy. The department also participates in the University’s internship program for students; see Career Center Programs (University College) in the Catalog.

Geography and sustainability courses provide a background for many related professions including law, health care, planning (urban, regional, environmental, or transportation), environmental or transportation engineering, and international business, and are commonly required for students preparing to teach at elementary and secondary levels.

Geographical and sustainability science students acquire valuable skills in computer-based geographic information systems (GIS) software used to investigate and solve many environmental and social problems. Opportunities for graduates with GIS training are growing rapidly in both private and governmental organizations. To gain related knowledge, get hands-on experience, and conduct independent research, students have access to the department’s state-of-the-art Geographical Information Systems Instructional Lab (GISIL). For more information, see Facilities [p. 2] in this section of the Catalog.

The Department of Geographical and Sustainability Sciences offers a Master of Arts and Doctor of Philosophy degrees. Graduate programs focus on studies that extend understanding of the environmental consequences of human decisions at local, regional, and global scales; processes that lead to geographic patterns in health and disease; technologies that help capture, represent, visualize, and analyze geographic patterns and processes; and processes that produce ecosystem services and sustainable futures. Within this broad domain, the department has strengths in environmental justice, environmental modeling, urban ecology, GIScience and GIS, land use/land cover change, and health geography. The mission of the graduate program is to empower graduates with the ability to conduct significant research. In addition to offering graduate degree programs, the department administers the geoinformatics subprogram of the graduate informatics certificate; see Certificate in Informatics (Graduate College) in the Catalog.

Courses for General Education

The Department of Geographical and Sustainability Sciences offers a number of courses that students in other majors may use to satisfy requirements of College of Liberal Arts and Sciences General Education Program. Look for courses with the prefix GEOG under “Natural Sciences,” “Social Sciences,” and “International and Global Issues” in the General Education Program section of the Catalog. Nonmajors also may choose geographical and sustainability sciences courses as electives.

Certificate in Social Science Analytics

The Department of Geographical and Sustainability Sciences collaborates with the Departments of Political Science, Sociology, and Statistics and Actuarial Science to offer the undergraduate program in social science analytics; see Certificate in Social Science Analytics (College of Liberal Arts and Sciences) in the Catalog.

Certificate in Sustainability

The Department of Geographical and Sustainability Sciences collaborates with the Departments of Biology, Earth and Environmental Science, Civil and Environmental Engineering, and Urban and Regional Planning as well as the Tippie College of Business to offer the undergraduate program in sustainability; see Certificate in Sustainability (University College) in the Catalog.

Certificate in Wind Energy

The Department of Geographical and Sustainability Sciences (College of Liberal Arts and Sciences) and the Departments of Mechanical and Industrial Engineering, Civil and Environmental Engineering, and Electrical and Computer Engineering (College of Engineering) administer the undergraduate certificate program in wind energy; see Certificate in Wind Energy (College of Engineering) in the Catalog.
Related Certificate: Transportation Studies

The Transportation Studies Program offers the Certificate in Transportation Studies. The program focuses on the varied and complex problems of transportation and on interdisciplinary approaches to addressing them. The Departments of Civil and Environmental Engineering, Mechanical and Industrial Engineering, and Geographical and Sustainability Sciences and the School of Urban and Regional Planning participate in the program. The certificate is coordinated by the School of Urban and Regional Planning. See Certificate in Transportation Studies (Graduate College) in the Catalog.

Programs

Undergraduate Programs of Study

Majors
- Major in Geography (Bachelor of Arts)
- Major in Geography (Bachelor of Science)

Minors
- Minor in Geographic Information Science
- Minor in Geography

Certificate
- Certificate in Geographic Information Science

Graduate Programs of Study

Majors
- Master of Arts in Geography
- Doctor of Philosophy in Geography

Facilities

The department houses three geographic information computational laboratories. They support a variety of geographic information system (GIS) software packages, including the latest software from Esri (ArcGIS) and Erdas (Imagine) as well as a suite of other commercial and open-source software. All lab computers are regularly updated to ensure that they are capable of running the latest software at peak performance.

The Geographical Information Systems Instructional Lab (GISIL) is the department’s center for GIS teaching as well as a place where students conduct geographic and GIS-related projects. It is equipped with 27 networked student workstations, instructional support technology (e.g., CRT projection), and a suite of peripherals, including a LiDAR 3-D scanner, high-end global positioning system (GPS) units, and a large-format printer.

The environmental modeling and GIS research laboratories contain state-of-the-art machines (Windows and Linux platforms), geoprocessing and statistical software, and an array of software development tools. Projects requiring massive storage or high-performance computing have access to additional resources managed by the University’s Information Technology Services research support group. The University of Iowa is a charter member of Internet2, with a high-performance network link to the Department of Geographical and Sustainability Sciences. The University also is a member of the University Consortium on Geographic Information Science.

To aid studies of water resources and physical geography, the department has a laboratory for the analysis of vegetation, soil, and water quality. The laboratory has a variety of field equipment, including soil probes, portable meteorological stations, GPS, ground-based 3-D LiDAR, anemometers, spectrometers, light sensors, and data loggers.

Faculty and graduate students participate in multidisciplinary working groups through the University’s Program in Applied Mathematical and Computational Sciences, the Center for Global and Regional Environmental Research, the Center for Health Effects of Environmental Contamination, International Programs, the Institute for Rural and Environmental Health, the Iowa Quaternary Studies Group, and the Public Policy Center. Participation in multidisciplinary working groups also is available through interdisciplinary research grants with investigators from other University of Iowa academic units, for example, the College of Engineering, the Carver College of Medicine, and the College of Public Health.

Geographic researchers also have access to other University of Iowa resources, such as the University’s Main Library, whose collections include more than 115,500 maps; 3,600 atlases and reference works; and around 100,000 aerial photographs, primarily of Iowa.

Courses

Geography Courses

GEOG:1000 First-Year Seminar 1 s.h.
Small discussion class taught by a faculty member; topics chosen by instructor; may include outside activities (e.g., films, lectures, performances, readings, visits to research facilities). Requirements: first- or second-semester standing.

GEOG:1010 Introduction to Human Geography 3 s.h.
People and the places they inhabit; how geography relates to other social science subjects, such as economics, politics, history, and modern languages. GE: Social Sciences.

GEOG:1020 The Global Environment 3 s.h.
Underlying processes driving human/environment interaction, including climate change, deforestation, and natural disasters; environmental challenges, including declining biological diversity; human response to more frequent severe climate events; production of a more sustainable future. GE: Natural Sciences without Lab.

GEOG:1021 The Global Environment Lab 1 s.h.
Laboratory application of concepts discussed in GEOG:1020; computer-based and traditional approaches to the investigation of earth’s processes, including earthquakes, water and energy balances, climate and weather, and soil development. Corequisites: GEOG:1020, if not taken as a prerequisite. GE: Natural Sciences Lab only.

GEOG:1030 Our Digital Earth 3 s.h.
New technologies that have revolutionized how people navigate in unfamiliar places, locate friends and colleagues, manage cities, and confront environmental problems during the past decade; fundamental concepts related to how geographic information is used to better understand and manage the world and our everyday lives.
GEOG:1046 Big Ideas: People and the Environment - Technology, Culture, and Social Justice 3 s.h.
How resources, commodities, people, and ideas cross borders; examination of globalization through issues of technology, social justice, environment; perspectives from anthropology, gender studies, geography, energy science, and development. GE: International and Global Issues. Same as ANTH:1046, GWSS:1046.

GEOG:1050 Foundations of GIS 3 s.h.
Introduction to concepts and methods associated with geographical information systems (GIS) technology; remote sensing, map making, data collection, and application of GIS to real-world problem solving.

GEOG:1060 Geography of Asia: From Japan to Pakistan 3 s.h.
Varied cultures and environments of Asia; different geographic regions and processes in Asian development. GE: International and Global Issues.

GEOG:1065 Introduction to Spatial Analysis: Patterns and Processes 3 s.h.
Fundamental concepts and applications of spatial analysis; how clusters of crime in a community are identified; how patterns of disease are described within a community.

GEOG:1070 Contemporary Environmental Issues 3 s.h.
Global environmental challenges; ecological, economical, cultural, and geographical causes and effects; underlying science and potential solutions to global issues of sustainability. GE: International and Global Issues; Social Sciences.

GEOG:1090 Globalization and Geographic Diversity 3 s.h.
World regions including their physical environment, culture, economy, politics, and relationships with other regions; students learn about conflicts within and between regions. GE: International and Global Issues; Social Sciences.

GEOG:1115 Big Ideas: The History and Science of Oil 3 s.h.
Historical perspective on business, science, geology, technology, politics, environment, and culture of the global oil industry; the rise of oil as the most influential international business of the last 150 years, the material foundation of economies, a major force in world politics, a shaper of daily life, and a guide to understanding Earth's deep history. Offered fall semesters. GE: Historical Perspectives. Same as EES:1115, ENVIS:1115, HIST:1115.

GEOG:2013 Introduction to Sustainability arr.
Introduction to sustainability knowledge, skills, and habits as a means to shape one's vision of a sustainable citizen; emphasis on basic skills of literacy, applied math, and finding information; traditional sustainability knowledge areas related to society, economy, and environment; intersecting themes (e.g., informed consumerism, eco-economics, and livable environments). Same as BUS:2013, URP:2013.

GEOG:2110 Seven Billion and Counting: Introduction to Population Dynamics 3 s.h.
How dramatic changes to the size of population has changed fundamental characteristics of populations and processes, such as food and water scarcity, climate change and biodiversity, rise of megacities, health and disease, migration, social networks, economics, environment, and household structure. GE: Social Sciences. Same as GHS:2110.

GEOG:2130 World Cities 3 s.h.
Important urban centers, past and present, with focus on why cities exist and how they are organized; examination of different historical eras, including ancient, medieval, and modern; analysis of urban physical structures.

GEOG:2310 Introduction to Climatology 3 s.h.
Introduction to atmospheric processes that determine weather and climate; flow of energy through the atmosphere, distribution and movement of moisture and air, and atmospheric disturbances such as cyclones, hurricanes, and tornadoes, and climate change. Recommendations: GEOG:1020 or similar earth systems science course. Same as EES:2310.

GEOG:2374 Biogeography 3 s.h.
Introduction to processes that lead to the patterns of plant and animal distributions we see across the globe; processes of focus include plate tectonics, climate, and human-ecological interactions; species management and conservation in relationship to climate and change in human patterns of environment. Prerequisites: BIOL:1141 or BIOL:1370 or BIOL:1261 or GEOG:1020 or BIOL:1412. Same as BIOL:2374.

GEOG:2410 Environment and Development 3 s.h.
Investigation of questions that surround human-environment interactions; case studies highlight approaches (e.g., political economy, gender, sustainability) to addressing and understanding human relationship to environmental change.

GEOG:2910 The Global Economy 3 s.h.
Examination of contemporary economic geography; types of national economies, uneven development, role of government in shaping economy, multinational corporations; foundation for understanding national economies and economic statistics; contemporary issues including economic globalization, commodification of nature, de-industrialization. GE: International and Global Issues; Social Sciences.

GEOG:2930 Water Resources 3 s.h.
Introduction to science and policy issues affecting water resources management in the U.S.; how the intersection of people, climate, technology, and geography affects the quality, availability, and demand for freshwater resources.

GEOG:2950 Environmental Conservation 3 s.h.
Scientific foundations of biological conservation; strategies used to better connect conservation practice with needs of a growing human population. Prerequisites: EES:1080 or GEOG:1020 or GEOG:1070.

GEOG:2990 Readings for Undergraduates arr.
Supervised readings in geography.

GEOG:3001 Special Topics arr.
Contemporary fields of inquiry, such as biophysical systems, GIS, locational analysis, water resources, economic geography, demographic analysis, environment, urbanization, transportation, and regional development.

GEOG:3010 Geographic Information Systems and Science 3 s.h.
Solid foundation and introduction to GIS and digital map making; what GIS is and how GIS can contribute to research, careers, and everyday life; fundamentals that underlie GIS, including methods for GIS data collection and georeferencing, spatial modeling, spatial data analysis, and visualization; GIS trends including mobile GIS and the Web.
GEOG:3020 Earth Surface Processes 3 s.h.
Basic geomorphic and environmental processes that shape the earth's surface; emphasis on erosion, transport, deposition by land mass movement (creep, landslides, earth flow), fluid agents (wind, water, ice); methods used to study these processes. Prerequisites: EES:1080 or EES:1050 or EES:1080 or GEOG:1020. Same as EES:3020, ENV5:3020.

GEOG:3070 Hungry Planet: Global Geographies of Food 3 s.h.
Societal and environmental implications of past, current, and future global food supply examined from a geographical perspective; focus on questions of who eats what, where, and why; transformative history of agriculture, modern agribusiness and alternative food supplies, geopolitical implications of food production, food scarcity and rising food costs, urban versus rural agriculture, the obesity epidemic versus malnutrition, and the future of food. Same as GHS:3070.

GEOG:3110 Geography of Health 3 s.h.
Provision of health care in selected countries, with particular reference to the Third World; focus on problems of geographical, economic, cultural accessibility to health services; disease ecology, prospective payment systems, privatization, medical pluralism. Same as GHS:3111.

GEOG:3210 Health, Work, and the Environment 3 s.h.
Survey of environmental and occupational health hazards and the associated health risks of exposure; how public health protects society from these hazards; how public health policy can be influenced by science. Same as GHS:3070.

GEOG:3310 Landscapes 3 s.h.
Landsystems as complex systems that arise from interactions among physical environments and species, including humans; exploration of how these interactions shape landscape ecosystems and influence landscape change through lecture, computer and field labs, and research discussion; key topics include causes and consequences of landscape pattern, techniques used to quantify and model landscape pattern, the role of humans in determining landscape structure and function, and conservation and management of species and landscapes. Prerequisites: GEOG:2374 or BIOL:2673 or BIOL:2673. Requirements: ecology course numbered 1000-4999.

GEOG:3320 Wetlands: Function, Geography, and Management 3 s.h.
Hydrological, geomorphological, and ecological processes and their interaction in wetlands; geographic differences in wetlands based on climate and hydrology; wetlands, lakes, and rivers; role of wetlands in drainage basin hydrology and flooding; values and valuation of wetlands; wetland law and wetland delineation; wetlands and water resources. Prerequisites: GEOG:2310 or GEOG:2374. Same as EES:3260.

GEOG:3330 Human Dimensions of Climate 3 s.h.
How climate shapes human societies; focus on how climate and climate variability affects food production, water use, energy use, and human disease systems (e.g., influenza, malaria, air pollution, diarrheal disease); climate change impacts (e.g., sea level rise, droughts, wildfires, famine); societal impact, adaptation and vulnerability, mitigation strategies; policy.

GEOG:3340 Ecosystem Services: Human Dependence on Natural Systems 3 s.h.
Ecosystem services—valuable goods and services produced by ecosystems (e.g., flood control, food production, water purification)—from an interdisciplinary perspective centering on geographic techniques used to measure, map, and model ecosystem services; methods used to incorporate ecosystem services into decision and policy making; how human activities alter these services. Prerequisites: GEOG:1050 and (GEOG:2374 or GEOG:3310 or EES:1080 or BIOL:2673 or BIOL:1370 or GEOG:1070 or EES:1080 or BIOL:2673 or GEOG:1020).

GEOG:3350 Urban Ecology 3 s.h.
Urban ecology as an interdisciplinary field that investigates relationships between natural and the systems in urban environments; students explore urban ecosystems through lecture, discussion of current research, and field-based research projects; and identify how cities can become more sustainable systems. Prerequisites: BIOL:2673 or BIOL:2673 or GEOG:2374. Requirements: GEOG:2374 or ENV5:2673 or introductory course in ecology, and junior standing.

GEOG:3360 Soil Genesis and Geomorphology 3 s.h.
Introduction to soil genesis, soil geomorphology, and classification including the basics of soil profile description and soil-landscape, soil-vegetation, and soil-climate relationships; emphasis on study of soils as the interface between living and non-living Earth systems and the role of soils in sustaining ecosystems and human societies; short field excursions and a weekend field trip. Requirements: college earth science and chemistry. Same as EES:3360.

GEOG:3400 Iowa Environmental Policy in Practice 3 s.h.
How Iowa government addresses environmental policy development and implementation; policy process and current environmental issues; students attend meetings with Iowa State legislators and relevant agency personnel in Des Moines, Iowa, to observe how policies move into practice in agency offices. Prerequisites: GEOG:1070 or POLI:3111 or GEOG:3780 or ANTH:3102. Requirements: junior or higher standing.

GEOG:3420 Sustainable Development and Green Building Concepts 3 s.h.
Green building and sustainable development trends and theories: water policy, ecosystem services, climate change, and public health; LEED certified building process and each of the associated credit categories (Sustainable Sites, Energy and Atmosphere, and Water Efficiency); how knowledge of green building and sustainable development can help lessen the environmental impact of built environments, improve the bottom line, and better plan for great communities.

GEOG:3500 Introduction to Environmental Remote Sensing 3 s.h.
Basic concepts and principles of remote sensing; sources of data; georegistration; digital processing and classification of remotely sensed images for extraction of environmental information; linkage of remote sensing techniques with GIS analysis.

GEOG:3505 Foundations of GIS 3 s.h.
Cartography, map analysis, and geographic information systems; map projections and scale; data collection, remote sensing, GPS; data structures and organization; cartometry; symbolization and visualization.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOG:3520</td>
<td>GIS for Environmental Studies</td>
<td>3 s.h.</td>
<td>Students learn new, more advanced techniques for the representation and study of human and natural systems using geographic information systems (GIS); application of this new knowledge to environmental management and problem solving. Prerequisites: GEOG:1050.</td>
</tr>
<tr>
<td>GEOG:3540</td>
<td>Introduction to Geographic Visualization</td>
<td>3 s.h.</td>
<td>Introduction of basic concepts and techniques that underlie cartographic representation, interaction, and geovisualization; map symbolization and visual variables; spatiotemporal visualization, multivariate mapping, interactive cartography, animation, geovisual analytics, 3-D visualization, virtual and augmented reality. Prerequisites: GEOG:1050. Same as IGPI:3540.</td>
</tr>
<tr>
<td>GEOG:3550</td>
<td>Integrating Time into GIS</td>
<td>3 s.h.</td>
<td>Fundamental concepts for integrating temporal elements into geographic information systems (GIS); conceptual and formal models of time, models of change, event-based modeling, modeling of moving entities; topics related to fundamentals of spatiotemporal databases and query languages. Prerequisites: GEOG:1050.</td>
</tr>
<tr>
<td>GEOG:3560</td>
<td>Spatial Analyses of Wind Energy</td>
<td>3 s.h.</td>
<td>Underlying processes, measurement methods, and spatial analyses related to wind energy; students explore techniques for data collection and analysis; GIS-based approaches to renewable energy siting.</td>
</tr>
<tr>
<td>GEOG:3570</td>
<td>Light Detection and Ranging (LiDAR): Principles and Applications</td>
<td>3 s.h.</td>
<td>Basic principles and applications of Light Detection and Ranging (LiDAR): LiDAR as an essential technology for mapping and analyzing a vast range of topics, including hydrology flooding, transportation planning, and 3-D modeling. Recommendations: GEOG:3500 or EES:3100.</td>
</tr>
<tr>
<td>GEOG:3750</td>
<td>Environmental Quality: Science, Technology, and Policy</td>
<td>3 s.h.</td>
<td>Interpretation of pollutants and water pollutants; emphasis on environmental standards under existing laws, setting environmental priorities, risk assessments and comparisons; local, regional, national and international case studies in environment and health; socioeconomic and institutional considerations in designing environmental protection strategies; selected field trips. Prerequisites: STAT:1020.</td>
</tr>
<tr>
<td>GEOG:3760</td>
<td>Hazards and Society</td>
<td>3 s.h.</td>
<td>Examination of the impact and societal responses to natural and technological hazards; using case studies from around the world, students explore relationships between extreme events, human behavior, disaster management, public policy, and technology to understand what makes people and places vulnerable to hazards. Same as GHS:3760.</td>
</tr>
<tr>
<td>GEOG:3800</td>
<td>Environmental Economics and Policy</td>
<td>3 s.h.</td>
<td>Reasons why markets fail in environmental realm (e.g., externalities, common pool resources, club goods, public goods); ecosystem services and techniques used for their valuation; revealed and stated preferences; cost-benefit analysis and role in policy-making process; tools to address environmental market failures, particularly command and control, taxes and subsidies, and mitigation markets; focus on air pollution, climate change, and water-related policies.</td>
</tr>
<tr>
<td>GEOG:3920</td>
<td>Planning Livable Cities</td>
<td>3 s.h.</td>
<td>Development of livable cities in the United States; economic, physical, environmental, and political forces that shape their growth; impact of planning, how it shapes the future of cities. Same as URP:3001.</td>
</tr>
<tr>
<td>GEOG:3940</td>
<td>Transportation Economics</td>
<td>3 s.h.</td>
<td>Overview of transportation markets—intercity, rural, urban; transportation modes—rail, highway, air, water, pipeline, transit; issues in finance, policy, planning, management, physical distribution, and environmental, economic, and safety regulation. Recommendations: ECON:1100 and ECON:1200. Same as ECON:3750, URP:3350.</td>
</tr>
<tr>
<td>GEOG:3992</td>
<td>Undergraduate Research</td>
<td>arr.</td>
<td>Opportunity for undergraduate students to participate in faculty-led research projects.</td>
</tr>
<tr>
<td>GEOG:4010</td>
<td>Field Methods in Physical Geography</td>
<td>3 s.h.</td>
<td>Introduction to fundamental approaches to research design and of sampling environmental variables commonly used in environmental sciences; basic methods of sampling and lab analyses of vegetation, land cover, soils, and more.</td>
</tr>
<tr>
<td>GEOG:4020</td>
<td>Field Methods: Mapping and Mobile Computing</td>
<td>3 s.h.</td>
<td>Mapping techniques and mobile computing applications associated with GPS, wireless technologies, and data sampling techniques.</td>
</tr>
<tr>
<td>GEOG:4030</td>
<td>Senior Project Seminar</td>
<td>3 s.h.</td>
<td>Development of an independent research project, preparation of a research report, and presentation of the associated outcomes. Offered spring semesters.</td>
</tr>
<tr>
<td>GEOG:4150</td>
<td>Health and Environment: GIS Applications</td>
<td>3 s.h.</td>
<td>Introduction to how geographic information systems (GIS) and spatial statistics are used in the study of patterns of health and disease in space and time. Same as GHS:4150.</td>
</tr>
<tr>
<td>GEOG:4500</td>
<td>Applications in Environmental Remote Sensing</td>
<td>4 s.h.</td>
<td>Theory and practice of remote sensing and digital image processing; practical applications to human-environment interactions. Recommendations: GEOG:3500 or EES:3110 or ENVS:3110.</td>
</tr>
<tr>
<td>GEOG:4520</td>
<td>GIS for Environmental Studies Applications</td>
<td>3 s.h.</td>
<td>Project-driven course to advance student knowledge of geographic information systems (GIS); application of GIS to environmental change analysis, environmental assessment, hazard/risk analysis, and environmental decision making. Prerequisites: GEOG:3520.</td>
</tr>
<tr>
<td>GEOG:4570</td>
<td>Spatial Analysis and Location Models</td>
<td>3 s.h.</td>
<td>Application of location models within GIS environments to support decision making; small area demographic forecasting, location-allocation models, regionalization problems, shortest path models, other spatial analysis methods used to support spatial decisions. Prerequisites: GEOG:1050.</td>
</tr>
<tr>
<td>GEOG:4580</td>
<td>Introduction to Geographic Databases</td>
<td>3 s.h.</td>
<td>Introduction to basic building blocks of spatial database design, spatial data models, structures, relationships, queries (SQL), indexing, and geoprocessing; design and construction of various types of spatial databases, including relational and big data approaches such as ArcGIS geodatabase, PostGIS/PostgreSQL, and MongoDB. Prerequisites: GEOG:1050. Same as IGPI:4581.</td>
</tr>
<tr>
<td>Course Number</td>
<td>Course Title</td>
<td>Credits</td>
<td>Description</td>
</tr>
<tr>
<td>---------------</td>
<td>--------------------------------------------------------------</td>
<td>---------</td>
<td>-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>GEOG:4650</td>
<td>Simulation in Environmental Geography</td>
<td>3 s.h.</td>
<td>Exploration of how computer simulations are used in environmental studies, with focus on landscape ecology; students learn the basics of performing simulations and the principles and applications of simulation through readings and labs. Requirements: advanced courses in environmental geography or environmental science and senior standing.</td>
</tr>
<tr>
<td>GEOG:4750</td>
<td>Environmental Impact Analysis</td>
<td>4 s.h.</td>
<td>In-depth exposure to the history and evolution of the U.S. Environmental Impact Assessment (EIA) process; discussion of major court cases; ecological, economic, and political aspects of current environmental controversies; exposure to real-world scenarios that are crucial to understanding the EIA process in action; field trips to six or seven environmental control facilities in Iowa City and neighboring areas. Prerequisites: GEOG:1070. Same as URP:4750.</td>
</tr>
<tr>
<td>GEOG:4770</td>
<td>Environmental Justice</td>
<td>3 s.h.</td>
<td>Introduction to the field of environmental justice; understanding and addressing the processes that lead poor and marginalized communities to face a disproportionate degree of environmental risks and hazards.</td>
</tr>
<tr>
<td>GEOG:4870</td>
<td>Applied Geostatistics</td>
<td>3 s.h.</td>
<td>Applications of geostatistical methods to geology, geography, hydrology, environmental sciences, and engineering; variogram, Kriging, analysis of spatial-varied data with varied computer software in participants’ specialties. Same as EES:4870.</td>
</tr>
<tr>
<td>GEOG:4930</td>
<td>Urban Geography</td>
<td>3 s.h.</td>
<td>Central ideas of modern urban geography, their links to social theory; focus on interrelation between social change, urban environment; evolution of urban systems, emergence of the capitalist city, urban social and residential differentiation, local politics of uneven development.</td>
</tr>
<tr>
<td>GEOG:4990</td>
<td>Senior Thesis</td>
<td>3 s.h.</td>
<td>Original research. Requirements: senior standing.</td>
</tr>
<tr>
<td>GEOG:5001</td>
<td>Readings</td>
<td>arr.</td>
<td>Supervised readings by graduate students in topics of their choice.</td>
</tr>
<tr>
<td>GEOG:5010</td>
<td>Fundamentals of Geography</td>
<td>3 s.h.</td>
<td>Geography as an academic discipline; history, advances, epistemology, common themes.</td>
</tr>
<tr>
<td>GEOG:5050</td>
<td>Research and Writing in Geography</td>
<td>3 s.h.</td>
<td>Identification of research areas; research questions and hypotheses; responsible conduct of research; methodological decisions; research proposal and paper writing.</td>
</tr>
<tr>
<td>GEOG:5070</td>
<td>Special Topics</td>
<td>arr.</td>
<td>Contemporary fields of inquiry, such as biophysical systems, GIS, locational analysis, water resources, economic geography, demographic analysis, environment, urbanization, transportation, and regional development.</td>
</tr>
<tr>
<td>GEOG:5129</td>
<td>Information Systems for Resource Management</td>
<td>3 s.h.</td>
<td>Understanding and managing natural and engineered resources requiring data-reach foundation; management of data; complex data-driven technologies integrated into data and information systems (DIS); hands-on opportunity to develop or use capabilities of DIS for study or research area of interest (science, engineering, industrial operation); wind power generation, an emerging field in Iowa, used as a case study for illustrating key DIS components, links, and functionalities. Same as CEE:5129, ECE:5129, IE:5129, ME:5129.</td>
</tr>
<tr>
<td>GEOG:5550</td>
<td>Modeling Space and Time</td>
<td>3 s.h.</td>
<td>How to generate time-space-resolved estimates of sociophysical environmental contexts with the aid of modern geo-spatial technologies; how to model social, behavioral, and health outcomes with reference to multilevel time-space-resolved sociophysical environmental contexts; environmental contexts from air pollution and pesticide concentration to neighborhood diversity; statistical modeling of varied social, behavioral, and health outcomes such as dropping out of college, smoking, excessive weight, asthma, mental and physical disability. Requirements: a course in statistics and good understanding of correlation and regression.</td>
</tr>
<tr>
<td>GEOG:5650</td>
<td>Simulations in Landscape Ecology</td>
<td>3 s.h.</td>
<td>Dynamics of land use and land cover change explored through advanced use of computer simulations in landscape ecology; how simulation is used in the field; simulations based on landscape ecology questions, with analysis of results using typical landscape ecology metrics. Prerequisites: GEOG:4650.</td>
</tr>
<tr>
<td>GEOG:5800</td>
<td>Environmental Economics and Policy</td>
<td>3 s.h.</td>
<td>Reasons why markets fail in environmental realm (e.g., externalities, common pool resources, club goods, public goods); ecosystem services and techniques used for their valuation; revealed and stated preferences; cost-benefit analysis and role in policy-making process; tools to address environmental market failures, particularly command and control, taxes and subsidies, and mitigation markets; focus on air pollution, climate change, and water-related policies.</td>
</tr>
<tr>
<td>GEOG:6100</td>
<td>Seminar in Health and Environment</td>
<td>3 s.h.</td>
<td>Research on health and environment.</td>
</tr>
<tr>
<td>GEOG:6264</td>
<td>Planning Sustainable Transportation</td>
<td>2-4 s.h.</td>
<td>Theories and methods of exerting public control over passenger and freight transportation; social and environmental regulation; effects of changing finance, regulation, and pricing policies, including privatization, tolls, impact fees. Same as URP:6265.</td>
</tr>
<tr>
<td>GEOG:6300</td>
<td>Seminar in Environment, Conservation, and Land Use</td>
<td>1-3 s.h.</td>
<td>Research on land use, water resources, conservation.</td>
</tr>
<tr>
<td>GEOG:6500</td>
<td>Seminar in Spatial Analysis and Modeling</td>
<td>1-3 s.h.</td>
<td>Research themes in spatial analysis, GIScience, simulation, remote sensing. Same as IGI:6501.</td>
</tr>
<tr>
<td>GEOG:7000</td>
<td>Geography Colloquium</td>
<td>1 s.h.</td>
<td>Directed research in health and environment.</td>
</tr>
<tr>
<td>GEOG:7150</td>
<td>Research in Health and Environment</td>
<td>1-3 s.h.</td>
<td>Directed research in health and environment.</td>
</tr>
</tbody>
</table>
GEOG:7350 Research in Environment, Conservation, and Land Use 1-3 s.h.
Directed research in land use, water resources, conservation.

GEOG:7550 Research in Spatial Analysis and Modeling 1-3 s.h.
Directed research in spatial analysis, GIScience, simulation.

GEOG:7750 Research in Environmental Policy 1-3 s.h.
Directed research in environmental justice and policy.

GEOG:7999 Thesis arr.