Chemistry

Chair
• James B. Gloer

Undergraduate major: chemistry (B.A., B.S.)
Undergraduate minor: chemistry
Graduate degrees: M.S. in chemistry; Ph.D. in chemistry
Faculty: https://chem.uiowa.edu/people
Website: https://chem.uiowa.edu/

The Department of Chemistry is committed to providing its undergraduate students with the skills needed to comprehend and confront the scientific challenges of the new century. The department’s strong and vibrant undergraduate chemistry program is an environment where students can develop and ultimately find success in their chosen career paths.

The graduate programs in chemistry train scholars to lead efforts in chemistry research and teaching. One of the primary goals is to train students to become independent scientists. The department offers course work to provide the foundational knowledge that enhances student efforts in the laboratory.

Student Organizations

A number of organizations are open to undergraduate students for support and enrichment.

Students may join the University of Iowa undergraduate student chapter of the American Chemical Society (ACS). Chapter activities include dinner meetings with guest speakers, field trips to local industries, participation in local and national meetings of the ACS, and participation in chemistry outreach programs. Students in the ACS student chapter develop leadership, organization, and speaking skills valuable during their college experience and throughout their careers.

The department has a chapter of Alpha Chi Sigma, a coed chemistry fraternity. The Alpha Theta Chapter is open to students in chemistry, biochemistry, chemical engineering, and related fields. Alpha Chi Sigma sponsors many social and professional events throughout the year.

The department endorses the National Organization for the Professional Advancement of Black Chemists and Chemical Engineers (NOBCChE), which is committed to discovery, transmittal, and application of knowledge in science and engineering and to increasing the participation of underrepresented populations in these fields. NOBCChE sponsors diverse programs designed to foster professional development and to encourage students to pursue careers in science and technical fields.

The department also supports the activities of Women in Science and Engineering (WiSE), whose aim is to increase women’s participation and advancement as students, faculty members, and professional staff; promote a supportive study and work environment for women; integrate women’s ideas, strengths, and approaches into research, teaching, and service; and inform the public of educational and career opportunities for women in scientific and technical fields. WiSE sponsors a living learning community in a University residence hall for first-year female students majoring in science or engineering, the Student-to-Student Support in Science mentoring program, a service learning program, and the WiSE Discourse and Dining series.

Programs

Undergraduate Programs of Study

Majors
• Major in Chemistry (Bachelor of Arts)
• Major in Chemistry (Bachelor of Science)

Minor
• Minor in Chemistry

Graduate Programs of Study

Majors
• Master of Science in Chemistry
• Doctor of Philosophy in Chemistry

Facilities

The Department of Chemistry’s main office, support facilities, and faculty offices are located in the Chemistry Building, as is laboratory and classroom space dedicated to teaching and research activities. Several faculty members have offices and laboratories in the Iowa Advanced Technology Laboratories across the street from the Chemistry Building. Extensive resources are readily accessible such as NMR, mass spectrometry, and X-ray analysis facilities, advanced computational resources, and complete machine, electronics, and glass shops. See the Department of Chemistry website for information about facilities and advanced instrumentation available for instruction and research.

The Chemistry Center serves all students who take chemistry courses as well as the department’s instructors. The center offers assistance with registration, returns examinations and homework assignments, schedules alternative exams, and provides information about all lower-level chemistry courses. Information about student organizations and departmental scholarships and awards also is available at the Chemistry Center.

Courses

Students planning to take more than one year of chemistry should take CHEM:1110 Principles of Chemistry I and CHEM:1120 Principles of Chemistry II.

Students who require only one year of chemistry with no laboratory component may take CHEM:1070 General Chemistry I and CHEM:1080 General Chemistry II.

Students who have not had high school chemistry or do not have strong math and/or chemistry preparation should consider taking CHEM:1070 General Chemistry I before CHEM:1110 Principles of Chemistry I; academic advisors and the Chemistry Diagnostic Test can help students determine which of these courses to take first.

Chemistry Courses

CHEM:1000 First-Year Seminar 1-2 s.h.
Small discussion class taught by a faculty member; topics chosen by instructor; may include outside activities (e.g., films, lectures, performances, readings, visits to research facilities). Requirements: first- or second-semester standing.
CHEM:1050 Technology and Society 3 s.h.
Nonmathematical exploration of selected areas of technology; basic science background, current technological applications, implications for society; for non-science majors. Recommendations: closed to students who have earned more than 3 s.h. in chemistry courses. GE: Natural Sciences without Lab.

CHEM:1060 Technology and Society Laboratory 1 s.h.
Laboratory for CHEM:1050; demonstrations, student experiments. Corequisites: CHEM:1050 if not taken as a prerequisite. Requirements: closed to students who have earned more than 3 s.h. in chemistry courses. GE: Natural Sciences Lab only.

CHEM:1070 General Chemistry I 3 s.h.
Atomic structure, chemical bonds, mole relations, stoichiometry, states of matter, acids and bases, reaction rates, electrochemistry, nuclear chemistry. Requirements: elementary algebra. GE: Natural Sciences without Lab.

CHEM:1080 General Chemistry II 3 s.h.
Organic chemistry and biochemistry. Requirements: CHEM:1070 or high school chemistry. GE: Natural Sciences without Lab.

CHEM:1090 Supplemental Chemistry Lab 1 s.h.
Lab techniques, elementary synthesis, measurement, analysis, case-study lectures and experiments; safety glasses, appropriate dress, compliance with laboratory safety protocols required.

CHEM:1100 Chemistry in Industry and the Economy 3 s.h.
Atomic structure, chemical bonding, acid and bases, polymers, pharmaceutics, DNA, proteins, and basic economics. Requirements: non-science major. GE: Natural Sciences without Lab.

CHEM:1110 Principles of Chemistry I 4 s.h.
Chemical bonding and chemical reactions; atomic and molecular structure, chemical equations, stoichiometry, gases, liquids, thermodynamics of phase changes, solutions, equilibrium, acids, bases, pH, elementary organic chemistry; the solid state, including modern materials; lecture, discussion, laboratory. Requirements: MATH:1005 with a minimum grade of C-, or ACT math subscore of 24, or ALEKS score above 60%. Recommendations: Chemistry Diagnostic Test score of 16. GE: Natural Sciences with Lab.

CHEM:1120 Principles of Chemistry II 4 s.h.
Continuation of CHEM:1110; colligative properties of solutions, chemical thermodynamics, electrochemistry, chemical kinetics, chemical bonding, aspects of industrial chemistry, nuclear chemistry; lecture, discussion, laboratory. Requirements: CHEM:1110. GE: Natural Sciences with Lab.

CHEM:1160 Principles of Chemistry Lab 2 s.h.
Laboratory techniques. Requirements: grades of C or higher in CHEM:1180 and CHEM:1190. GE: Natural Sciences Lab only.

CHEM:1180 Chemical Science I 3 s.h.
GE: Natural Sciences without Lab.

CHEM:1190 Chemical Science II 3 s.h.
GE: Natural Sciences without Lab.

CHEM:1200 Chemical Science Laboratory 2 s.h.
GE: Natural Sciences Lab only.

CHEM:2021 Fundamentals of Chemical Measurements 3 s.h.
Introduction to experimental and data analysis techniques used in performing quantitative chemical measurements; topics include titrations, spectrophotometry, potentiometry, chromatography, and statistical techniques for use in data processing and interpretation; laboratory. Prerequisites: CHEM:1120. Requirements: chemistry major.

CHEM:2210 Organic Chemistry I 3 s.h.
Carbon-containing compounds; structure, stereochemistry, physical properties, reactivity, reaction mechanisms, synthesis; emphasis on alkanes, alkenes, alkynes, ethers, alcohols, and alkyl halides. Prerequisites: CHEM:1120.

CHEM:2220 Organic Chemistry II 3 s.h.
Continuation of CHEM:2210; use of spectroscopic techniques to determine chemical structures; chemistry of carbonyl compounds, amines, aromatics, amino acids, carbohydrates, nucleosides. Prerequisites: CHEM:2210 or CHEM:2230.

CHEM:2230 Organic Chemistry I for Majors 3 s.h.
Carbon-containing compounds; structure, stereochemistry, physical properties, reactivity, reaction mechanisms, synthesis; emphasis on alkanes, alkenes, alkynes, ethers, alcohols, alkyl halides, aromatics. Prerequisites: CHEM:1120. Requirements: chemistry, biochemistry, or chemical engineering major.

CHEM:2240 Organic Chemistry II for Majors 3 s.h.
Continuation of CHEM:2230; use of spectroscopic techniques to determine chemical structures; chemistry of carbonyl compounds, amines, ethers, amino acids, carbohydrates, and nucleosides. Prerequisites: CHEM:2210 or CHEM:2230. Requirements: chemistry, biochemistry, or chemical engineering major.

CHEM:2410 Organic Chemistry Laboratory 3 s.h.
Preparation, purification, identification, analysis of chemical compounds, principally organic compounds. Prerequisites: CHEM:1120 and (CHEM:2210 or CHEM:2230). Corequisites: CHEM:2220 or CHEM:2240.

CHEM:2420 Organic Chemistry Laboratory for Majors 3 s.h.
Preparation, purification, identification, analysis of chemical compounds, principally organic compounds. Prerequisites: CHEM:1120 and (CHEM:2210 or CHEM:2230). Corequisites: CHEM:2220 or CHEM:2240. Requirements: chemistry, biochemistry, or chemical engineering major.

CHEM:3110 Analytical Chemistry I 3 s.h.
Modern theory and practice; emphasis on chemical equilibria (acid-base chemistry, solubility, complexation) and electroanalytical chemistry (potentiometry, voltammetry, coulometry). Requirements: CHEM:1120 and (MATH:1460 or MATH:1850) and (PHYS:1511 or PHYS:1611).

CHEM:3120 Analytical Chemistry II 3 s.h.
Modern theory and practice; emphasis on atomic and molecular spectroscopy, mass spectrometry, chemical separations. Requirements: CHEM:1120 and (MATH:1460 or MATH:1850) and (PHYS:1511 or PHYS:1611).

CHEM:3250 Inorganic Chemistry 3 s.h.
CHEM:3430 Analytical Measurements 3 s.h.

CHEM:3440 Physical Measurements 3 s.h.
Laboratory experience using advanced instrumental and computational methods to generate and analyze data relevant to modern physical chemistry. Requirements: chemistry major, CHEM:2021 and (CHEM:4431 or CHEM:4432).

CHEM:3530 Inorganic Chemistry Laboratory 3 s.h.
Preparation and characterization of a variety of inorganic, organometallic, and coordination compounds of the main group and transition elements; emphasis on synthetic techniques, methods for characterization of inorganic species. Requirements: CHEM:2021 and (CHEM:2410 or CHEM:2420) and CHEM:3250.

CHEM:3560 Advanced Methods in Chemical Research: Special Topics 1-3 s.h.
Introduction to advanced research methods.

CHEM:3994 Undergraduate Research 1-4 s.h.

CHEM:4171 Advanced Analytical Chemistry 3 s.h.

CHEM:4261 Selected Topics in Chemistry 1-3 s.h.

CHEM:4270 Advanced Inorganic Chemistry 3 s.h.
Modern principles, including crystal field/ligand field/molecular orbital theory, inorganic reaction mechanisms, coordination chemistry, bioinorganic chemistry, main group and transition metal organometallic chemistry, solid-state inorganic chemistry. Requirements: CHEM:3250 and CHEM:4432.

CHEM:4372 Advanced Organic Chemistry 3 s.h.
Basic concepts from perspectives of structure, mechanism, synthesis, stereochemistry. Requirements: CHEM:2220 or CHEM:2240.

CHEM:4430 Principles of Physical Chemistry 3 s.h.
Kinetics, transport properties, elementary thermodynamics, and selected topics in quantum mechanics and spectroscopy; emphasis on application of chemistry to areas of science including health and biosciences, environmental sciences, and related areas. Requirements: CHEM:1120 and (MATH:1460 or MATH:1850) and (PHYS:1512 or PHYS:1612).

CHEM:4431 Physical Chemistry I 3 s.h.
Chemical thermodynamics and its application to chemical equilibrium, phase changes and chemical equilibria; ideal and real gases; kinetic theory; surface absorption and electrochemistry; thermodynamics. Requirements: CHEM:1120 and (MATH:1560 or MATH:1860) and (PHYS:1512 or PHYS:1612).

CHEM:4432 Physical Chemistry II 3 s.h.
Quantum mechanics and its application to atomic and molecular structure; determination of structure and bonding by various spectroscopic methods; chemical kinetics. Requirements: CHEM:1120 and (MATH:1560 or MATH:1860) and (PHYS:1512 or PHYS:1612).

CHEM:4450 Synthesis and Measurement 3 s.h.
Laboratory investigations integrating synthesis and measurement techniques from inorganic, analytical, and physical chemistry; emphasis on modern applications of chemistry in biology, medicine, environmental science, catalysis, and materials science. Prerequisites: (CHEM:4432 or CHEM:4430 or CHEM:4431) and (CHEM:2420 or CHEM:2410) and (CHEM:3120 or CHEM:3110) and CHEM:3250 and CHEM:2021.

CHEM:4480 Introduction to Molecular Modeling 3 s.h.
Theory and application of *ab initio* quantum mechanics, semiempirical molecular orbital theory, and molecular mechanics force fields to chemical research problems; underlying theory of these methods (with emphasis on *ab initio* theory) and their practical application to chemical problems; computational chemistry projects using modeling software. Corequisites: CHEM:4432, if not taken as a prerequisite. Requirements: CHEM:4432.

CHEM:4760 Radiochemistry: Energy, Medicine, and the Environment 3 s.h.
Fundamental theoretical concepts of radiochemistry and their application in energy, medicine, and environmental sectors. Requirements: CHEM:1120 and (CHEM:2210 or CHEM:2230).

CHEM:4850 Upstream Biotechnology Processes 2 s.h.
Introduction to fermentation, fermenter preparation, cell growth and medium requirements, inoculation, sampling, process termination, separation of cells, fermentation case study, enzyme activity, and biocatalysis. Same as PHAR:4850.

CHEM:4873 Atmospheric and Environmental Chemistry 3 s.h.
Fundamental chemical processes of importance in the atmosphere, soil, and water, with emphasis on kinetics and photochemistry of homogeneous and heterogeneous reactions, atmospheric structure and dynamics, global geochemical cycling, chemistry-climate relationships, environmental remediation strategies; experimental methods in field and laboratory studies. Corequisites: CHEM:4431 or CHEM:4432, if not taken as a prerequisite. Requirements: CHEM:4431 or CHEM:4432.

CHEM:4875 Introduction to Polymer Chemistry 2-3 s.h.
Synthesis, structures, characterization, properties, and applications of polymers. Requirements: CHEM:2220 or CHEM:2240.

CHEM:5091 Graduate Chemistry Orientation 2-3 s.h.
Pedagogy, safety, and research issues relevant to advanced chemistry careers.

CHEM:5092 Ethics in Chemical Sciences 1 s.h.
Scholarly integrity for being a responsible chemist on graduate-level research; introduction to infrastructure of scientific scholarship with emphasis on interacting with peers, funding agencies, industrial entities; responsible conduct in research in the context of creation of knowledge, dissemination of scientific findings, intellectual property, and conflict of interest; workshops to study cases in chemical research to illustrate the principles of scholarly integrity.

CHEM:5107 Electrochemistry 2-3 s.h.
Fundamental aspects, including mass transport and electron transfer, electrochemical methodology (e.g., voltammetry and potentiometry), determination of homogeneous and heterogeneous reaction mechanisms. Recommendations: CHEM:3110, CHEM:3120, and CHEM:4171.

CHEM:5060 Special Topics 1-3 s.h.
Pedagogy, safety, and research issues relevant to advanced chemistry careers.

CHEM:5107 Electrochemistry 2-3 s.h.
Fundamental aspects, including mass transport and electron transfer, electrochemical methodology (e.g., voltammetry and potentiometry), determination of homogeneous and heterogeneous reaction mechanisms. Recommendations: CHEM:3110, CHEM:3120, and CHEM:4171.

CHEM:5092 Ethics in Chemical Sciences 1 s.h.
Scholarly integrity for being a responsible chemist on graduate-level research; introduction to infrastructure of scientific scholarship with emphasis on interacting with peers, funding agencies, industrial entities; responsible conduct in research in the context of creation of knowledge, dissemination of scientific findings, intellectual property, and conflict of interest; workshops to study cases in chemical research to illustrate the principles of scholarly integrity.

CHEM:5107 Electrochemistry 2-3 s.h.
Fundamental aspects, including mass transport and electron transfer, electrochemical methodology (e.g., voltammetry and potentiometry), determination of homogeneous and heterogeneous reaction mechanisms. Recommendations: CHEM:3110, CHEM:3120, and CHEM:4171.
CHEM:5108 Spectroscopy 3 s.h.
Principles of atomic and molecular absorption and emission spectroscopy in ultraviolet, visible, and infrared regions of the spectrum, including fluorescence, phosphorescence, Raman spectroscopy; applications to analytical problems, with emphasis on modern instrumentation and methodology. Recommendations: CHEM:3110, CHEM:3120, and CHEM:4171.

CHEM:5109 Separations 3 s.h.
Analytical separations; basic theory, practical applications, instrumentation, modern techniques (extraction, gas and liquid chromatography, capillary electrophoresis), and detection (mass spectrometry). Recommendations: CHEM:3110, CHEM:3120, and CHEM:4171.

CHEM:5110 Chemical Sensors 2 s.h.
Theory, practical limitations, analytical utility based on immobilized reagents with electrochemical, thermal, optical transduction mechanisms. Recommendations: CHEM:3110 and CHEM:3120, or CHEM:4171.

CHEM:5114 Chemical Systems Modeling 3 s.h.
Basic processes and techniques; these methods applied to systems relevant to students' own research. Recommendations: CHEM:3110 or CHEM:3120 or CHEM:4171.

CHEM:5115 Biophotonics 3 s.h.

CHEM:5118 Nanomaterials 3 s.h.
Basic principles associated with nanoscience and nanotechnology; fabrication and synthesis, size dependent properties, characterization, applications of materials at nanometer length scales, recent technological breakthroughs in the field. Requirements: graduate standing or advanced undergraduate standing in engineering and science. Recommendations: knowledge of basic chemistry.

CHEM:5120 Electrochemistry of Polymer Films 1 s.h.
Use of electrochemical methods to characterize polymer and thin films; transport through polymer films and composites, electrochemistry of polymer films. Requirements: physical chemistry course.

CHEM:5150 Chemometrics 3 s.h.

CHEM:5190 Seminar: Analytical Chemistry 0-1 s.h.
Content varies.

CHEM:5199 Special Topics in Analytical Chemistry arr.

CHEM:5202 Coordination Chemistry and Spectroscopy 1.3 s.h.

CHEM:5203 Organometallic Chemistry 3 s.h.

CHEM:5204 Physical Methods in Inorganic Chemistry 2 s.h.
Application of physical methods to problems; recent developments; emphasis on magnetic resonance spectroscopy. Recommendations: CHEM:4270.

CHEM:5205 Bioinorganic Chemistry 2-3 s.h.
The role of metal ions in biology from an inorganic chemical perspective; emphasis on structure and mechanism for transition metal-containing metallo-enzymes.

CHEM:5206 Solid-State and Materials Chemistry 3 s.h.
Introduction to the chemical concepts of solid-state chemistry; focus on synthesis and characterization of various inorganic materials; structure/property relationships, real-world examples. Recommendations: CHEM:4270.

CHEM:5212 Mass Spectrometry 3 s.h.
Examination of mass spectrometry in terms of basic theory, instrumentation, qualitative and quantitative analysis, and its application to the environmental and biological sciences. Recommendations: CHEM:3110 or CHEM:3120.

CHEM:5290 Seminar: Inorganic Chemistry 0-1 s.h.

CHEM:5299 Special Topics in Inorganic Chemistry 1-3 s.h.

CHEM:5321 Spectroscopic Methods in Organic Chemistry 3-4 s.h.

CHEM:5326 Organic Reactions 3 s.h.
Survey of organic reactions used in contemporary organic synthesis; emphasis on C-C bond forming reactions, functional group interconversions, oxidations and reductions; mechanistic details of reaction types; innovations in catalytic and asymmetric organic reactions. Recommendations: CHEM:4372.

CHEM:5328 Mechanisms of Organic Reactions 3 s.h.
Application of basic mechanistic concepts.

CHEM:5329 Advanced Organic Synthesis 1-3 s.h.

CHEM:5390 Seminar: Organic Chemistry 0-1 s.h.

CHEM:5399 Organic Chemistry Special Topics 1,3 s.h.
Recommendations: CHEM:4372.

CHEM:5431 Statistical Thermodynamics I 3 s.h.
Fundamentals of classical thermodynamics and equilibria; ensembles; noninteracting systems; theory of phase transitions; Monte-Carlo methods; classical fluids; nonequilibrium systems. Recommendations: CHEM:4431.

CHEM:5433 Quantum and Computational Chemistry 3 s.h.
Fundamental principles of quantum chemistry; angular momentum; approximation methods; theory of atomic and molecular electronic structure; applications of computational quantum mechanics to chemical systems. Corequisites: CHEM:4432, if not taken as a prerequisite.

CHEM:5434 Molecular Spectroscopy 3 s.h.
Quantum mechanical theory of molecular spectroscopy; time-dependent perturbation theory, selection rules, lineshapes; selected applications in microwave, vibrational (infrared and Raman), electronic, optical, and magnetic resonance spectroscopy. Recommendations: CHEM:5433.

CHEM:5435 Chemical Kinetics 3 s.h.
Potential energy surfaces, transition state theory, diffusion limited rates, linear free energy relationships, isotope effects, solvent effects, RRKM theory; connection between experiment and various theories in the gas and solution phases; emphasis on assignment of experimental error to derived quantities. Recommendations: CHEM:4432.
CHEM:5436 Electronic Structure and Informatics in Chemistry
Basic principles of molecular electronic structure theory; molecular structure and reactivity; molecular orbital theory; density functional theory; introduction to informatics and data science; how calculations can be used to enhance experimental research projects. Prerequisites: CHEM:4432.

CHEM:5438 Surface Chemistry and Heterogeneous Processes
Fundamental and applied aspects of surface chemical processes; theories of molecular adsorption/desorption and surface complexation; kinetics; surface analysis and instrumentation; applications of surface chemistry in heterogeneous catalysis, heterogeneous environmental/atmospheric processes, and materials chemistry. Recommendations: CHEM:4431.

CHEM:5490 Seminar: Physical and Environmental Chemistry
CHEM:5499 Physical Chemistry Topics
Advanced topics relevant to modern physical chemistry. Recommendations: CHEM:4432 and MATH:1860.

CHEM:5599 Special Topics in Chemistry Education
Special topics related to chemistry education; topics vary.

CHEM:5875 Perspectives in Biocatalysis
Applied enzymology, protein design, structure-activity relationships, biosensor technology, microbial transformations, biodegradation of environmental pollutants. Requirements: graduate standing in a participating department supported by the Predoctoral Training Program in Biotechnology. Same as BIOC:5875, CBE:5875, CEE:5875, MICR:5875, PHAR:5875.

CHEM:5890 Research Frontiers in Chemistry
CHEM:5990 Chemistry Colloquium
Presentation and discussion of research by invited presenters.

CHEM:6990 Research Seminar
Presentation and discussion of thesis research for advanced degrees.

CHEM:7270 Ethics in Chemical Sciences
Scholarly integrity for being a responsible chemist on graduate-level research; introduction to infrastructure of scientific scholarship with emphasis on interacting with peers, funding agencies, industrial entities; responsible conduct in research in the context of creation of knowledge, dissemination of scientific findings, intellectual property, and conflict of interest; workshops to study cases in chemical research to illustrate the principles of scholarly integrity.

CHEM:7604 Ethics in Chemical Sciences for Postdocs
Introduction to infrastructure of scientific scholarship; emphasis on interacting with peers, funding agencies, industrial entities; scholarly integrity for being a responsible chemist on graduate-level research; responsible conduct in research in context of creation of knowledge, dissemination of scientific findings, intellectual property, conflict of interest; workshop cases in chemical research that illustrate principles of scholarly integrity.

CHEM:7999 Research in Chemistry
Thesis work for advanced degrees.