Undergraduate major: mechanical engineering (B.S.E.)
Graduate degrees: M.S. in mechanical engineering; Ph.D. in mechanical engineering
Faculty: https://me.engineering.uiowa.edu/people
Website: https://me.engineering.uiowa.edu

The Department of Mechanical Engineering offers distinct undergraduate and graduate degrees and research programs in mechanical engineering. It also is the administrative home of the undergraduate certificates in Wind Energy and Naval Hydrodynamics.

Mechanical engineering is broadly concerned with energy, manufacturing, and design of machines. Mechanical engineers conceive, plan, design, and direct the manufacture, distribution, and operation of a wide variety of devices, machines, and systems—including complex human-machine systems—for energy conversion, biofuel production, environmental control, materials processing, transportation, materials handling, and other purposes. Major subspecialties of mechanical engineering include thermal-fluids engineering and mechanical systems engineering.

Thermal-fluid phenomena occur in many engineering systems and devices such as aircraft; automobiles; off-road vehicles; ships; gas turbines; heat exchangers; material processes; heating, ventilating, air-conditioning, and refrigerating systems; hydraulic and wind turbines; airbag inflators; fuel cells; biofuel processes; environmental control devices; and biomedical systems.

Machines and mechanical systems are the foundations of human technology. Mechanical systems are found in mechanical engineering systems and devices such as manufacturing equipment, medical equipment, ground vehicles, heavy equipment, farm equipment, aircraft, ships, home appliances, packaging machinery, wind turbine blades and gearboxes, robots, and biomedical systems.

Mechanical engineers find a wide variety of career opportunities in industry, government, and education. Mechanical engineers form an integral part of most industries, including aerospace firms, energy companies, automobile manufacturers, health care providers, food- and metal-processing industries, petroleum refineries, electronic and computer manufacturers, heavy construction and agricultural vehicle manufacturers, wind turbine manufacturers, thermal comfort equipment firms, farm equipment firms, and consulting companies.


Naval Hydrodynamics

The Department of Mechanical Engineering offers the undergraduate certificate program in Naval Hydrodynamics; see the Certificate in Naval Hydrodynamics in the Catalog.

Wind Energy

The Departments of Civil and Environmental Engineering, Electrical and Computer Engineering, Mechanical Engineering (College of Engineering), and Geographical and Sustainability Sciences (College of Liberal Arts and Sciences) offer the undergraduate certificate program in wind energy. The Department of Mechanical Engineering administers the certificate; see the Certificate in Wind Energy in the Catalog.

Related Certificate: Transportation Studies

The Transportation Studies Program offers the Certificate in Transportation Studies. The program focuses on the varied and complex problems of transportation and on interdisciplinary approaches to addressing them. The Departments of Civil and Environmental Engineering, Industrial and Systems Engineering, Mechanical Engineering (College of Engineering), Economics (Tippie College of Business), Geographical and Sustainability Sciences (College of Liberal Arts and Sciences), and the School of Urban and Regional Planning (Graduate College) participate in the program.

The certificate is coordinated by the School of Urban and Regional Planning; see the Certificate in Transportation Studies in the Catalog.

Undergraduate Instruction

Engineering Core

The laboratories for fluid flows and transport processes contain a wind tunnel; a water flume; a water table; four water channels with porous media; three air-jet tables; various air, water, and oil flow devices; and facilities for numerous small-scale experiments to demonstrate the principles of mass, momentum, and energy transfer.

For information about laboratories affiliated with core courses coordinated by other College of Engineering departments, see the departments' Catalog sections.

Computational Fluids Laboratory

The Computational Fluids Laboratory is equipped with 20 computers running ANSYS Fluent software used in fluid mechanics courses.

Design Project Laboratory

The Design Project Laboratory supports all senior design project courses. It is equipped with eight mid-level workstations as well as a high-end workstation, which enables students to manipulate full design models and interactive WebEx sessions with companies using the analysis software during the session. Research versions of ANSYS Fluent and ProE, standard computers, and videoconferencing facilities also are available.

Experimental Fluid Mechanics Laboratory

The Experimental Fluid Mechanics Laboratory acquaints students with ongoing research in fluid mechanics and hydraulics. The lab focuses on literature, experiments, numerical simulations, audio-video aids, and links to educational and scientific internet sites. Students using the lab develop an understanding of basic flow mechanisms and become familiar with the latest developments in experimental techniques and instrumentation.

Ralph and Barbara Stephens Experimental Engineering Laboratory

The Ralph and Barbara Stephens Experimental Engineering Laboratory supports the required undergraduate courses ME:3351 Engineering Instrumentation and ME:4080 Experimental Engineering. The lab is equipped with varied instruments and test rigs that help students learn basic measurement principles and laboratory procedures. It also offers sensors for measurement of displacement, mass, temperature, pressure, velocity and flow rate, heat flux, force, torque, and so forth.

Solidification Laboratory

The Solidification Laboratory supports research in fundamental aspects of solidification and their application in casting of metals. Research in the lab ranges from basic experimental and computational studies of microstructure evolution to modeling and simulation of a wide variety of industrial metal casting processes. Collaboration with the casting industry has resulted in custom-made software for process control, new capabilities in commercially available casting simulation software, and strategies for yield improvement and defect prevention. Facilities include numerous state-of-the-art computer workstations and experimental test setups.

Thermal and Heat Transfer Laboratory

The Thermal and Heat Transfer Laboratory is equipped with data acquisition systems to process data online. It also provides facilities for experiments in heat transfer measurements.

Graduate Facilities

Fluid Mechanics

The program in fluid mechanics is conducted in close collaboration with IIHR—Hydroscience & Engineering. The equipment available to graduate students includes several wind tunnels and hydraulic flumes, an environmental flow facility, a towing tank, two special low-temperature flow facilities for investigation of ice phenomena, hot-wire and laser anemometer systems, particle-image velocimetry systems, and computer-based data acquisition systems.

Facilities available in the department include a flow visualization and imaging system with CCD (charge-coupled devices) camera, and a low-speed wind tunnel. IIHR and College of Engineering shops provide the necessary support. In addition to using in-house workstations and computers, the department's faculty members and students make extensive use of supercomputers at national centers.

Mechanical Systems

Computer-based simulation research activities in the mechanical systems area are carried out mainly in the Center for Computer-Aided Design (CCAD). CCAD maintains a variety of high-performance computer systems in support of its technology research and development efforts. General computing services are supported by a number of LINUX and Windows applications servers connected to centralized file servers. CAD/CAE, software development, virtual prototyping, and virtual environment development applications are hosted on numerous high-performance workstations. Standard desktop, multimedia, and office productivity applications are hosted on a network of more than 40 workstations.

Thermal Sciences

Facilities for research in the thermal sciences and systems consist of a low-pressure combustion chamber, a high-pressure continuous flow combustion chamber, a high-pressure chamber for atomization study, a test rig for heat transfer to near supercritical fluids, a diffusion flame test rig, an enclosed laminar flame test rig, an air atomization spray apparatus, test stands for melting and solidification studies, various optical measurement systems, and two fuel cell test rigs. Laser-based diagnostics (e.g., laser-induced fluorescence, imaging, and laser Doppler anemometry) are available for solidification, turbulent flow, heat transfer, and combustion studies. Flow visualization and imaging by CCD camera are available for the study of complex fluid motion and heat convection, and combustion flows.

Shared Laboratory

Design for Manufacturing Laboratory

The Design for Manufacturing Laboratory is used by students in mechanical engineering and in industrial and systems engineering. The laboratory provides students with experience in CAD/CAM systems. It is equipped with 4-axis CNC mills (Haas and Tormach), CNC router (Techno-CNC), CNC metal lathe (Haas and Techno-CNC), drill press, plastic injection molder, thermoforming machine, band saw, disc sander, bench grinder, polishing wheel, hand drill, sandblasting cabinet, press, foot shear, and welding station. The lab has the latest software technology, such as Pro/ENGINEER and Rhinoceros.

Mechanical Engineering Courses

ME:0000 Mechanical Engineering Internship/Co-op0 s.h.

Mechanical engineering students participating in the Cooperative Education Program register in this course during work assignment periods; registration provides a record of participation in the program on the student's permanent record. Requirements: admission to the Cooperative Education Program.

ME:1000 First-Year Seminar0-1 s.h.

Small discussion class taught by a faculty member; topics chosen by instructor; may include outside activities (e.g., films, lectures, performances, readings, visits to research facilities). Requirements: first- or second-semester standing.

ME:2020 Mechanical Engineering Sophomore Seminar0 s.h.

Introduction to the mechanical engineering profession and curriculum; ethics and professionalism in classroom and workplace; mentorship program and professional societies; visits to laboratories and local companies. Requirements: sophomore or transfer standing.

ME:2200 Introduction to Mechanical Engineering Design2 s.h.

Solid modeling, assemblies, drawings, and Geometric Dimensioning and Tolerancing (GD&T); basic engineering design process; introduction to engineering standards, product liability, and ethics. Prerequisites: ENGR:1100.

ME:2300 Manufacturing Processes3 s.h.

Fundamentals of design, engineering graphics, and manufacturing processing; computer graphics using Pro/ENGINEER for CAD and CAM; typical industrial processes including casting, welding, machining, and forming; laboratory exercises and projects. Corequisites: ENGR:2720 and (ME:2200 or BME:2710).

ME:3040 Thermodynamics II3 s.h.

Power and refrigeration cycles; mixtures of gases, psychometric mixtures; availability; thermodynamics of combustion and chemical equilibrium. Prerequisites: ENGR:2130.

ME:3045 Heat Transfer3 s.h.

Principles of heat transfer by conduction, convection, radiation; analytical and numerical methods of solution; applications to engineering problems. Prerequisites: MATH:3550 and ENGR:2510. Corequisites: ENGR:2730.

ME:3052 Mechanical Systems4 s.h.

Topics in mechanical behavior and failure of materials; materials selection in design; stress and deflection analysis; static failure theories; fatigue and durability in design; fracture, statistical, and reliability considerations; introduction to finite element analysis using commercial software packages; standards, product liability, engineering ethics. Prerequisites: ENGR:2750. Corequisites: ENGR:2720 and ENGR:2760 and STAT:2020.

ME:3091 Professional Seminar: Mechanical Engineering0 s.h.

Professional aspects of mechanical engineering: presentations, student/faculty interaction, professional society involvement, panel discussions, plant trip. Requirements: junior standing.

ME:3351 Engineering Instrumentation2 s.h.

Basic elements of measuring circuits (bridges, voltage dividers, shunts, transformers); laboratory instrumentation (oscilloscopes, multimeters, power supplies, signal generators); amplifiers; frequency response principles; sensors; data acquisition, signal processing, filtering using Labview. Prerequisites: PHYS:1612 and ENGR:2120.

ME:3600 Control of Mechanical Engineering Systems3 s.h.

Introduction to fundamental control theory and robot manipulators. Prerequisites: MATH:2560 and ENGR:2710.

ME:4024 Mechanical Engineering Design and Parametric Modeling3 s.h.

Design principles and methods to develop 3-D part models and assemblies; emphasis on use of mechanical engineering design principles and functional requirements through the complete design process using PTC Creo Parametric; for students with a basic knowledge of computer-aided design (CAD). Prerequisites: ENGR:2760. Corequisites: ENGR:2750 ME:3045.

ME:4048 Energy Systems Design4 s.h.

Principles and design of energy conversion systems, including solar, wind, and geothermal power systems; design of thermal-fluid system components, modeling and simulation of systems, optimization techniques; design projects. Prerequisites: ME:3045 and ME:3040.

ME:4055 Mechanical Systems Design3 s.h.

Kinematics of mechanisms, dynamics and vibration of machines, cam and gear, machine elements, computer-aided analysis of machines. Prerequisites: ENGR:2710 and ME:3052.

ME:4080 Experimental Engineering4 s.h.

Principles of physical measurements; standards calibration, estimation of error; static and dynamic performance of measuring systems; laboratory experience, experiment planning, report writing. Prerequisites: ME:3351. Corequisites: ME:3045 and ME:3052.

ME:4086 Mechanical Engineering Design Project2-3 s.h.

Application of mechanical, thermal, fluid systems design; student or team design projects initiated at various levels in the design process and carried through to higher levels; emphasis on synthesis, written and oral communication. Corequisites: ME:4048 or ME:4055.

ME:4098 Individual Investigations: Mechanical Engineeringarr.

Individual projects for mechanical engineering undergraduate students; laboratory study; engineering design project; analysis, synthesis, simulation of an engineering system; computer software development, research.

ME:4110 Computer-Aided Engineering3 s.h.

Computational engineering modeling and simulation, geometric modeling, grid generation, finite-element and finite-volume methods, uncertainty analysis, optimization, engineering applications. Prerequisites: ME:3052 and ENGR:2750. Same as CEE:4515.

ME:4111 Numerical Calculations3 s.h.

Development of algorithms for functional approximations, numerical differentiation and integration; solution of algebraic and differential equations, with emphasis on digital computations; initial and boundary value problems. Prerequisites: MATH:2560. Same as CEE:4511.

ME:4112 Engineering Design Optimization3 s.h.

Engineering design projects involving modeling, formulation, and analysis using optimization concepts and principles; linear and nonlinear models, optimality conditions, numerical methods. Prerequisites: ENGR:2110 and MATH:2550. Requirements: junior standing. Same as CEE:4512.

ME:4113 Control of Mechanical Engineering Systems3 s.h.

How to model simple engineering systems, apply time and frequency domain analysis techniques, and design control systems; application of these techniques using MATLAB; writing differential equations describing engineering systems and determine time domain response to a wide range of inputs; use of state-variable equations to model engineering systems and determine their time response to a wide range of inputs; describe advantages of feedback control; analyze performance of control systems; determine stability of control systems using Root-Locus, Bode, and Nyquist methods; design feedback control systems using frequency domain and state-variable methods. Prerequisites: MATH:2550 and MATH:2560 and ENGR:2710. Same as IE:4113.

ME:4115 Finite Element I3 s.h.

One- and two-dimensional boundary value problems; heat flow, fluid flow, torsion of bars; trusses and frames; isoparametric mapping; higher order elements; elasticity problems; use of commercial software. Prerequisites: ENGR:2750. Same as CEE:4533, IGPI:4115.

ME:4116 Manufacturing Processes Simulations and Automation3 s.h.

Material processing, metal cutting theories, forming, micro/nano fabrication, programmable logic controller, computer numerical controllers, discrete control system, DC and AC servo motors, Command generation. Prerequisites: ENGR:2760. Same as IE:4116.

ME:4117 Finite Element Analysisarr.

Trusses and frames; Rayleigh-Ritz methods; 2-D and 3-D elasticity problems; heat transfer, thermo-mechanical coupling; transient problems; use of commercial software for applications in analysis and design of mechanical engineering systems. Prerequisites: ENGR:2750.

ME:4120 State-Space Methods for Linear Control Systemsarr.

Overview of system modelling and classical control design tools and methods, and bridges those with state-space approach for analysis and control of linear systems in the time domain; topics include linearization, root locus, Bode diagrams, Nyquist criteria, robustness margins, lead-lag compensators, observability and controllability, state-space realizations, internal stability and input-output stability, pole-placement, observers and reduced order observers, separation principle, performance limitations, linear quadratic regulator and its guaranteed margins, and optimal estimation. Prerequisites: MATH:2550 and MATH:2560 and ENGR:2710.

ME:4125 Biomimetic Fluid Dynamics3 s.h.

Study and development of engineered systems that mimic the structure and function of biological systems; overview of the fluid dynamic principles that govern locomotion by swimming or flapping flight; equations of motion, fundamentals of aerodynamics; analytical models of force generation for swimming and flight; parameters governing effective locomotion; experimental and numerical studies to understand the present state of the art, challenges, and important questions. Prerequisites: ENGR:2510.

ME:4131 Manufacturing Systems3 s.h.

Manufacturing and logistics systems, supply chain management, MRP/ERP systems, lean manufacturing, concurrent engineering, value stream mapping and six sigma. Offered spring semesters. Prerequisites: IE:3700 and ENGR:2760. Same as IE:3300.

ME:4140 Modern Robotics and Automation3 s.h.

Introduction to basics of robotics and automation; mechanical design development and manufacturing of smart and automated devices, components, and systems; principles of robotic motion and kinematics; introduction to process automation through system requirement identification, equipment integration, sensors, actuation, and logical control; fundamentals of design, analysis, and manufacturing to meet functionality requirements of products, devices, and systems using the principles of mechatronics to develop smart and automated products. Prerequisites: ENGR:2710.

ME:4142 Wind Turbine Aerodynamics3 s.h.

Fluid mechanics of wind turbines and wind farms; engineering methodologies to design wind turbine blades; evaluation of rotor wakes; interaction between machines; effects of topography on wind turbine and wind farm performance. Prerequisites: ENGR:2510.

ME:4153 Fundamentals of Vibrations3 s.h.

Vibration of linear discrete and continuous mechanical and structural systems; harmonic, periodic, and arbitrary excitation; modal analysis; applications. Prerequisites: ENGR:2750. Same as CEE:4532.

ME:4164 Fundamentals of Wind Turbinesarr.

Application of fundamental principles of thermodynamics, fluid mechanics, and mechanical systems to wind turbine engineering; fundamentals of horizontal-axis wind turbines, wind energy conversion to useful work; wind turbine aerodynamics, performance, design of components; overview of wind resource and historical development of wind turbines; introduction to wind turbine installation and wind farm operation.

ME:4175 Computational Naval Hydrodynamics3 s.h.

Simulations based on relevant vessels and propellers will be used to introduce the use of computational fluid dynamics for the analysis of surface and underwater marine craft performance, while also introducing naval hydrodynamics concepts related to resistance, propulsion, maneuvering, and seakeeping; an educational version of the naval hydrodynamics code REX will be freely distributed and used in the class. Prerequisites: ENGR:2510.

ME:4176 Experimental Naval Hydrodynamics3 s.h.

Introduction to experimental methods for measurement of propeller thrust performance and resistance of surface vessels and underwater marine craft; present and expand on fundamental concepts related to fluid mechanics, measurement methods, and uncertainty analysis in a context that focuses on naval science and technology challenges; students work with models of relevant vessels and propellers in a dedicated towing tank facility. Prerequisites: ENGR:2510.

ME:4186 Enhanced Design Experience2-3 s.h.

Experience working in teams on industry-sponsored design and product development projects scheduled for production; emphasis on practical experience with the complete design process, from conceptualization through prototyping, evaluation, testing, and production; written and oral communication. Prerequisites: ME:4086.

ME:4200 Modern Engineering Materials for Mechanical Designarr.

Overview of design approaches for different engineering materials (i.e., metals, polymers, ceramics); topics include manufacturing processes, smart and advanced functionalities for applications in emerging engineering fields, theoretical models describing mechanical behavior, failure mechanisms, and design criteria; introduction to composite materials; computer lab activities focus on finite element method (FEM) simulations of materials with different mechanical properties. Prerequisites: ME:3052.

ME:4650 Mechatronics Engineering for Smart Device Design3 s.h.

Introduction to basic mechatronics system components and design principles using mechatronics to meet functionality requirements of products, processes, and systems; lab-oriented assignments and team-based projects presented with innovative case studies in diverse application domains; labs require students to use a micro-controller kit to finish hardware development assignments; for students who plan to have a career in areas such as product development, robotics, design and manufacturing automation, technology management and innovations. Prerequisites: ENGR:2120 and ENGR:2760. Same as IE:4650.

ME:5113 Mathematical Methods in Engineering3 s.h.

Linear ordinary differential equations, series solutions of differential equations, special functions, Laplace transforms, Fourier series, matrices, linear systems, eigenvalue problems, second-order partial differential equations. Prerequisites: MATH:2550 and MATH:2560. Same as CBE:5140, CEE:5513.

ME:5114 Nonlinear Control in Robotic Systems3 s.h.

Nonlinear analysis and control systems theory; focus on Lyapunov-based analysis methods and associated design techniques; introduction to definitions of stability for autonomous and nonautonomous systems leading to a Lyapunov framework, and based on the developed Lyapunov-based analysis tools, basic and advanced design tools for contemporary engineering problems are presented, including state-of-the-art techniques. Prerequisites: MATH:2560.

ME:5120 Vehicle System Dynamics3 s.h.

Introduction to principles and basic procedures used in analysis of vehicle system dynamics and design; topics include tire mechanics, longitudinal and cornering tire force characteristics, steady-state and transient vehicle cornering responses, vehicle stability control, ride comfort, suspension design, off-road vehicle mobility, tire-soil interaction, and vehicle performance evaluations. Prerequisites: ENGR:2710.

ME:5143 Computational Fluid and Thermal Engineering3 s.h.

Governing equations of fluid flow and heat transfer; basic numerical techniques for solution of the governing equations; estimation of accuracy and stability of the approximations; boundary conditions; grid generation; applications to flows and heat transfer in engineering systems; familiarity with software for analysis and design of thermo-fluids systems. Prerequisites: ME:3045.

ME:5145 Intermediate Heat Transfer3 s.h.

Steady and unsteady conduction; forced and natural convection; surface and gaseous radiation; condensation and evaporation; analytical and numerical methods and applications. Prerequisites: ME:3045.

ME:5146 Modeling of Materials Processing3 s.h.

Manufacturing processes for metals, polymers, semiconductors; processing by casting, solidification, crystal growth, polymer molding and extrusion, welding, heat treating, application of optical (laser) and electronmagnetic energy; processes that use momentum, heat, mass transfer principles; measurement and instrumentation for materials processing; current topics in materials processing. Corequisites: ME:3045.

ME:5149 Propulsion Engineering3 s.h.

Opportunity to develop basic understanding and knowledge of rocket and airbreathing propulsion systems, relevant terminology and analysis techniques, parameteric cycle analysis for ideal engines, off-design analysis methods, problem-solving methodology. Prerequisites: ME:3040. Requirements: graduate standing.

ME:5150 Intermediate Mechanics of Deformable Bodies3 s.h.

Application of equilibrium analyses, strain-displacement relations, and constitutive relationships to practical structural systems and elementary plane elasticity problems. Prerequisites: ENGR:2750. Same as BME:5660, CEE:5540.

ME:5154 Intermediate Kinematics and Dynamics3 s.h.

Kinematic and dynamic analysis of mechanical systems; computational kinematics, Lagrangian dynamics, principle of virtual work in dynamics, constrained dynamics, spatial dynamics. Prerequisites: ENGR:2710.

ME:5159 Fracture Mechanics3 s.h.

3-D stress states, definition and criteria for failure, nominal and local yield phenomena, linear elastic and elastic plastic fracture mechanics, plane stress and plane strain fracture toughness, J-Integral, crack opening displacement, environmental assisted cracking, fatigue crack growth, fail safe, and damage tolerant design. Prerequisites: BME:4910 or ME:4055 or ME:5150. Same as CEE:5549.

ME:5160 Intermediate Mechanics of Fluids3 s.h.

Basic concepts and definitions; pressure distribution in a fluid; governing equations and boundary conditions; integral and differential analysis; dimensional analysis and similarity; experimental analysis; laminar and turbulent internal and external flows; potential flows; engineering applications. Prerequisites: ENGR:2510. Same as CEE:5369.

ME:5162 Experimental Methods in Fluid Mechanics and Heat Transfer3 s.h.

Hands-on experience in methodology of conducting experiments in fluid mechanics and heat transfer from design to data acquisition and processing; essential theoretical elements, experimental methodologies, data acquisition systems, uncertainty analysis; wide variety of instruments for fundamental and applied experimentation; work in small groups; design, implement, test, and report an experiment in area of interest. Same as CEE:5372.

ME:5167 Composite Materials3 s.h.

Mechanical behavior of composite materials and their engineering applications; composite constituents (fibers, particles, matrices) and their properties and behavior; macromechanical behavior of composite laminae; micromechanical predictions of composite overall properties; classical lamination theory; composite beams and plates. Prerequisites: ENGR:2750. Same as CEE:5137.

ME:5179 Continuum Mechanicsarr.

Mechanics of continuous media; kinematics of deformation, concepts of stress and strain; conservation laws of mass, momentum and energy; constitutive theories; boundary and initial value problems. Prerequisites: ENGR:2750 or ENGR:2510. Same as CEE:5179.

ME:5195 Contemporary Topics in Mechanical Engineeringarr.

New topics in fluid and thermal sciences and mechanical systems not covered in other courses; topic and coverage determined by student/faculty interest. Requirements: junior standing.

ME:5210 Intermediate Thermodynamics3 s.h.

Fundamental principles of thermodynamics as applied to phase equilibrium; properties of fluids, first and second law, variable composition systems, behavior of real fluids, mathematical techniques for solution thermodynamics. Requirements: CBE:3105 or ME:3040 or graduate standing. Same as CBE:5110.

ME:5236 Optimization of Structural Systems3 s.h.

Advanced topics; optimization of structural topology, shape, and material; finite dimensional dynamic response optimization, sensitivity analysis, distributed parameter systems; projects. Same as BME:5720, CEE:5236.

ME:5360 Control Theory3 s.h.

State space approach; controllability, observability, canonical forms, Luenberger observers, feedback control via pole placement, stability, minimal realization and optimal control. Prerequisites: ECE:3600. Same as ECE:5600.

ME:5362 Computer-Based Control Systems3 s.h.

Discrete and digital control systems; application of computers in control; sampling theorem; discrete time system models; analysis and design of discrete time systems; control design by state variable and input/output methods; advanced topics in digital controls; lab. Prerequisites: ECE:5600. Same as ECE:5640, IGPI:5641.

ME:6191 Graduate Seminar: Mechanical Engineering1 s.h.

Presentation and discussion of recent advances and research in mechanical engineering by guest lecturers, faculty, students.

ME:6198 Individual Investigations: Mechanical Engineeringarr.

Individual project in mechanical engineering, for department graduate students; laboratory study, engineering design project, analysis and simulation of an engineering system, computer software development, research.

ME:6199 Research: Mechanical Engineering M.S. Thesisarr.

Experimental and/or analytical investigation of an approved topic for partial fulfillment of requirements for M.S. with thesis in mechanical engineering.

ME:6214 Analytical Methods in Mechanical Systems3 s.h.

Vector and function spaces; functionals and operators in Hilbert spaces; calculus of variations and functional analysis with application to mechanics; Ritz and Galerkin methods. Prerequisites: ME:5113. Same as CEE:6310.

ME:6215 Finite Element II3 s.h.

Computer implementation; plate and shell elements; mixed and hybrid formulations; nonlinear analysis; recent development; introduction to boundary element method. Prerequisites: CEE:4533. Same as CEE:6532, IGPI:6216.

ME:6216 Laser Materials Processing3 s.h.

Proficient engineering background involved in laser processing and manufacturing; fundamentals and operation principles for various types of laser systems, laser optics, principles of laser-matter interactions, laser-induced thermal and thermo-mechanical effects; emerging areas of laser applications (e.g., microscale and nanoscale laser processing, ultrafast laser processing) and related energy transport analyses; video demonstrations. Prerequisites: ME:3045 and MATH:3550.

ME:6217 Advanced Modeling and Simulation for Manufacturing3 s.h.

How materials often behave in a complicated manner involving deeply coupled effects among stress/stain, temperature, and microstructure during a manufacturing process; modeling and prediction of material processes based on a metallo-thermomechanical coupled analysis; focus on heat transfer modeling in material processes, fundamental mechanics aspects required for material processing analysis, and microstructural evolution modeling in material processes. Prerequisites: CEE:4533 and ME:3045.

ME:6245 Diffusive Transport3 s.h.

Diffusive transport of heat, mass, and momentum; phenomenological laws and analogies; analytical and numerical solution techniques; inverse heat conduction; multiphase and multicomponent systems. Prerequisites: ME:5145. Same as CBE:6145.

ME:6246 Advanced Numerical Methods for Mechanical Systems3 s.h.

Introduction to meshfree particle methods, extended finite element method, material stability analysis, thermal-mechanical coupling, and coupling of finite element/meshfree methods. Requirements: ME:4115 or ME:5143 or background in computational mechanics, computational chemistry, or computational physics.

ME:6247 Contact Mechanics3 s.h.

Varied aspects of contact mechanics and engineering applications, including stationary contacts, sliding, rolling, impact, and fretting fatigue; emphasis on theoretical basis of solutions of contact mechanics problems; mathematical methods of solving contact problems using Green's function method; complex potentials and integral transform methods. Prerequisites: ME:5113 and ME:5150.

ME:6255 Multiscale Modeling3 s.h.

Computational modeling of engineering materials ranging from molecular to continuum scales, molecular dynamics and Monte Carlo methods, nanoscale continuum modeling, scale-coupling methods. Prerequisites: ME:5143 or CEE:4533. Same as CEE:7549.

ME:6258 Computational Ship Hydrodynamics3 s.h.

Introduction to computation of problems in three main areas of ship hydrodynamics: resistance and propulsion, seakeeping, and maneuvering; focus on issues of simulating operating ships, modeling methods, and numerical techniques used to approach ship hydrodynamics. Prerequisites: ME:5160. Corequisites: ME:5143.

ME:6260 Viscous Flow3 s.h.

Equations of viscous flow; classical analytical and numerical solutions; flow regimes and approximations; laminar boundary layers—equations, solution methods, applications; stability theory and transition; incompressible turbulent flow—mean-flow and Reynolds-stress equations, modeling, turbulent boundary layers and free shear flows. Requirements: for ME:6260ME:5160; for CEE:6376CEE:5369. Same as CEE:6376.

ME:6261 Multibody System Dynamics3 s.h.

Introduction to principles of analytical and computational dynamics for rigid and flexible multibody systems; spatial kinematics and dynamics of rigid body systems, numerical solution procedures for multibody dynamics analysis, and flexible multibody dynamics. Prerequisites: ME:5154.

ME:6262 Inviscid Flow3 s.h.

Derivation of governing equations for fluid flow; general theorems for motion of inviscid, incompressible flows; solution techniques for two- and three-dimensional irrotational flows; forces and moments acting on immersed bodies; vortex kinematics and dynamics; steady and unsteady aerodynamic theory. Prerequisites: ME:5160.

ME:6263 Compressible Flowarr.

Compressible flow behavior; 1-D unsteady flow and appropriate use of x-t diagrams; 2-D flows and use of the method of characteristics; Burgers' Equation and its properties.

ME:6275 Advanced Heat Transfer3 s.h.

Conservation laws, forced and natural convection; surface and gaseous radiation; analytical and numerical methods; applications. Prerequisites: ME:5145.

ME:6278 Nonlinear Elasticity3 s.h.

Nonlinear elasticity theory; modern applications in biomechanics; vectors and tensors, constitutive theory of elastic material, some exact solutions of boundary value problems, inverse deformation relations, stability of elastic material, theories of tissue adaptive response. Prerequisites: ME:5150. Requirements: elementary linear elasticity.

ME:6534 Applied Optimal Design3 s.h.

Optimal design problem formulation; optimality conditions; linear, quadratic, convex, and nonlinear programming; Lagrangian duality; numerical algorithms for unconstrained and constrained design problems, design sensitivity analysis, engineering applications. Prerequisites: CEE:5513. Same as CEE:6534.

ME:6810 Advanced Topics on Additive Manufacturing3 s.h.

Review of critical challenges facing 3-D printing; emphasis on techniques and practical experience in developing novel additive manufacturing processes and applications; topics include 3-D content creation and preparation, CAD systems for additive manufacturing, additive manufacturing processes, fabrication speed and improvements, rapid tooling and indirective processes. Same as IE:6810.

ME:7248 Combustion Theory3 s.h.

Laminar flame theory; turbulent combustion; spray combustion; thermal ignition; pollutant formation, oxidation; combustion diagnostics. Prerequisites: ME:5145 and ME:5160.

ME:7250 Advanced Fracture Mechanics3 s.h.

Fracture of modern engineering materials; linear-elastic fracture; computational methods; functionally graded materials; elastic-plastic fracture; multiscale fracture and fatigue crack initiation. Prerequisites: ME:5113 and (ME:5159 or CEE:4533). Same as CEE:7250.

ME:7256 Computational Solid Mechanics3 s.h.

Advanced computational methods for nonlinear and dynamic analysis of solids, structures; new space- and time-discretization methods for problems, including highly nonlinearities, large deformation, contact/impact conditions. Prerequisites: ME:5113 and CEE:4533.

ME:7257 Probabilistic Mechanics and Reliability3 s.h.

Stochastic and reliability analysis of mechanical systems; computational methods for structural reliability; random eigenvalue problem; random field and stochastic finite element methods. Prerequisites: CEE:4533 and ME:5113.

ME:7259 Mechanical Design in Structures3 s.h.

Discrete and continuum variational equilibrium equations, discrete design sensitivity analysis for static responses and eigenvalues, interactive design workstation, continuum sizing design sensitivity analysis for static responses and eigenvalues, design sensitivity analysis of structural dynamics, differentiability theory, shape optimal design, shape design sensitivity analysis, design sensitivity of nonlinear structural systems. Prerequisites: CEE:4533 and ME:5113 and ME:5150.

ME:7266 Interfacial Flows and Transport Processes3 s.h.

Physics of fluid interfaces and numerical techniques to simulate interface dynamics; interfacial flow coupled with thermal-fluid transport, from molecular interactions to continuum approximations; development of computer code segments to track and represent interface-flow interactions. Prerequisites: ME:5145 and ME:5160.

ME:7267 Multiphase Flow and Transport3 s.h.

Thermodynamic and mechanical aspects of interfacial phenomena and phase transitions; nucleation, phase-change, species transport, particulate flows, liquid-vapor systems, solidification, porous media. Prerequisites: ME:5145 and ME:5160.

ME:7268 Turbulent Flows3 s.h.

Origin; need for modeling, averages, Reynolds equations, statistical description; experimental methods and analysis; turbulence modeling; free shear layers and boundary layers; complex shearflows; development of computational strategies; recent literature on theory and applications, chaos phenomena. Prerequisites: ME:5160.

ME:7269 Computational Fluid Dynamics and Heat Transfer3 s.h.

Development of numerical and algebraic approximations for elliptic, parabolic, hyperbolic partial differential equations; finite-volume, spectral, pseudo-spectral, Galerkin techniques; stability of numerical methods; CFL condition; stiff problems; adaptive grid generation and boundary-fitted coordinates; numerical solutions for one- and two-dimensional compressible and incompressible fluid flow and heat transfer problems. Prerequisites: ME:4111 and ME:5160.

ME:7295 Advanced Topics in Mechanical Systems3 s.h.

Advanced contemporary topics in mechanical systems engineering not covered in other courses and determined by student/faculty interest.

ME:7299 Research: Mechanical Engineering Ph.D. Dissertationarr.

Experimental and/or analytical investigation of an approved topic for partial fulfillment of requirements for Ph.D. in mechanical engineering.