Industrial Engineering, M.S.

Research and Study
Graduate study in industrial engineering is tailored individually. Programs of study for all students are based on their background and career objectives and are designed according to sound academic practice. The curriculum is highly flexible; the goal is academic excellence.

The program offers six principal academic focus areas: design and manufacturing, human factors engineering and ergonomics, engineering management, reliability and production systems, operations research and applied statistics, and information systems. Graduate students participate in research in their academic concentration areas.

Engineering Management
Current research in engineering management consists of entrepreneurship, parametric cash flow analysis, strategic management, and economic risk analysis. Engineering management studies concentrate on engineering administration, engineering economics, and information systems.

Human Factors and Ergonomics
Current research in human factors and ergonomics includes investigation of the effects of visual and auditory displays on human information processing and development of computer systems that ease the challenges of controlling complex medical and robotic systems. This work examines how engineers should shape information technology to enhance productivity, safety, and customer satisfaction. Industrial engineering faculty members and students work to improve the effectiveness of robot systems for exploration of Mars and the Moon, to improve driving safety, and to design new cockpit interfaces. The department has several medical, flight, and driving simulators. It also conducts research in other facilities, including the National Advanced Driving Simulator, the most advanced simulation facility in the world.

Human factors and ergonomics studies concentrate on designing systems compatible with human capabilities and limitations. Human factors engineering integrates components from the fields of psychology, cognitive sciences, physiology, statistics, and technical sciences to address issues of human-interface design and human-systems design. Specific considerations include human cognitive abilities and limitations, visual performance, error reduction, workload assessment and mitigation, design of jobs in the industrial environment, information acquisition and processing, choice of action, operator performance measurement, and economic concerns.

Information Systems
Studies in information systems concentrate on system design. Design problems involve devising information systems that meet a diverse set of requirements. Contemporary topics include network-based systems, client/server systems, internet systems, and medical informatics.

Manufacturing
Ongoing manufacturing research consists of flexible manufacturing systems, optimum control of processes, and reliability assessment. Manufacturing courses delve into selecting appropriate manufacturing methods, planning processing operations, devising control strategies, and designing products and manufacturing systems. Contemporary topics include computer-aided process planning, computer-aided design, computer-controlled manufacturing, concurrent engineering, and applications of artificial intelligence in manufacturing.

Operations Research and Applied Statistics
Ongoing research in operations research and applied statistics deals with the application of optimization techniques for informed decision making in the public and private sectors. The primary focus of this work is modeling, simulating, and optimizing the design and operation of systems such as logistics, communications, health care, and manufacturing. Studies in operations research and applied statistics concentrate on mathematical programming, statistical, and computer sciences for modeling, analyzing, and optimizing systems. Various methodologies in this area include mathematical programming, heuristic optimization, statistical analysis, and digital systems simulation.

Quality Control and Production Systems
Current research in quality control and production systems focuses on measures for corporate quality and reliability, computer-aided layout and scheduling, just-in-time production, inspection, and online expert systems in process control. Studies of quality control and production systems focus on reliability engineering, quality control, and production systems.

Related Certificate
Informatics
The Informatics Program offers the Certificate in Informatics with a health informatics subtrack. The subtrack emphasizes the organization, management, and use of health care information; health care research, education, and practice; and information technology developments in the socioeconomic context of health care. Industrial engineering students working toward the certificate complete ISE 5860 Health Informatics and approved electives. To learn more, see the Certificate in Informatics (Graduate College) in the Catalog.

Requirements
The Master of Science program in industrial engineering requires a minimum of 30 s.h. of graduate credit with thesis, and a minimum of 36 s.h. of graduate credit without thesis. Students who intend to pursue a Ph.D. should select the thesis option; those who hold research or teaching assistantships may be required to select the thesis option. The M.S. concentration in wind power management is open to students in either option. Students must maintain a g.p.a. of at least 3.00 on all graduate work at the University of Iowa.

All students must earn 21 s.h. in graduate-level industrial engineering courses. They earn a minimum of 9 s.h. in 5000-level industrial engineering courses and complete at least one 3000- or 5000-level course from each of three focus areas: human factors, operations research, and reliability and systems design. Thesis students who plan to pursue a Ph.D.
may choose to take two 5000-level courses in each of the
three focus areas in order to complete their Ph.D. breadth
requirement before entering the doctoral program. Students
select other courses in consultation with their advisors;
choices are documented in a student’s plan of study.
Thesis students may count a maximum of 6 s.h. of research
credit toward the degree and may include that credit in the
required 21 s.h. of graduate-level industrial engineering
courses. The thesis option does not include research credit.
All graduate students must register for ISE:5000 Graduate
Seminar; Industrial Engineering (1 s.h.) each semester of
enrollment. They may not substitute seminar credit for regular
course work or research credit.
Entering students must have strong verbal and written skills
in English and a background in computer programming
(e.g., C++, C, VB), probability, statistics, and mathematics
equivalent to that required by accredited undergraduate
engineering programs. Students with insufficient academic
background must remedy deficiencies by taking appropriate
courses beyond those normally required for the study plan.
All students are advised by the department chair or by a
designated faculty advisor. The department chair or the
graduate program coordinator assigns an advisor to students
during their first regular semester in residence.
During that semester, each student and the advisor prepare
a study plan, which they submit to the department chair for
approval. Once the plan is approved, it is filed with a student’s
record. It is a student’s responsibility to assure that the study
plan is submitted to the department chair.
Students must pass a final comprehensive examination, as
specified by their examination committees. Examination
committees consist of at least three Graduate College faculty
members and must be approved by the department chair.
The comprehensive examination may consist of both oral
and written parts. Its purpose is to assess the adequacy of a
student’s defense of thesis and/or course preparation. The
final study plan, approved by the Graduate College dean,
is prerequisite to the exam. A student should consult with the
advisor on the composition of the advisory/examination
committee and the time and place for the exam.
It is a student’s responsibility to submit a degree application
by the college’s deadline.
For more detailed information about M.S. program
requirements, including a list of focus area courses, see the
Industrial Engineering Graduate Handbook or link to
industrial engineering graduate programs on the Department
of Industrial and Systems Engineering website.

M.S. Concentration in Wind
Power Management

M.S. students in industrial engineering may elect to
concentrate in wind power management. They must meet all
regular requirements for the M.S. in industrial engineering.
In addition, thesis option students must take three courses
(9 s.h.) from the list of recommended courses. Nonthesis
option students must take four courses (12 s.h.) from the list
of electives. Students’ course selections must be approved by
their advisors.

Wind Power Management

<table>
<thead>
<tr>
<th>Recommended Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
</tr>
<tr>
<td>-------------------</td>
</tr>
<tr>
<td>ISE:3350</td>
</tr>
<tr>
<td>ISE:3600</td>
</tr>
<tr>
<td>ISE:3610</td>
</tr>
<tr>
<td>ISE:3700</td>
</tr>
<tr>
<td>ISE:3750</td>
</tr>
<tr>
<td>CEE:4107</td>
</tr>
<tr>
<td>CEE:4317</td>
</tr>
<tr>
<td>CEE:6151</td>
</tr>
<tr>
<td>ME:5143</td>
</tr>
<tr>
<td>ME:5195</td>
</tr>
<tr>
<td>ME:6255</td>
</tr>
<tr>
<td>ME:7268</td>
</tr>
</tbody>
</table>

Wind Power Management Electives

<table>
<thead>
<tr>
<th>Electives</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td>ISE:3760</td>
</tr>
<tr>
<td>CS:4400</td>
</tr>
<tr>
<td>EES:1290</td>
</tr>
<tr>
<td>MSCI:9200</td>
</tr>
<tr>
<td>OEH:5410</td>
</tr>
</tbody>
</table>

Admission

Applicants must meet the admission requirements of the
Graduate College; for detailed information about Graduate
College policies, see the Manual of Rules and Regulations of the
Graduate College on the Graduate College website.
Reference letters, student research interests, grade-point
average for previous graduate study, and factors such as
faculty availability are considered in admission decisions.
M.S. applicants may be admitted from an ABET-accredited
baccalaureate curriculum in any engineering discipline,
or in the mathematical sciences, the physical sciences, or
the computer sciences with a g.p.a. of at least 3.00 and an
acceptable score on the Graduate Record Examination (GRE)
General Test. Applicants from institutions outside the United
States must meet equivalent conditions for regular admission.
Students with lesser qualifications may be considered for
conditional admission.

Students from business or social science programs who have
mathematical preparation similar to that of engineering
students are considered for regular or conditional admission.
Students on conditional status must achieve regular status
within two sessions of their first registration by attaining
an acceptable grade-point average and gaining regular
acceptance by the industrial and systems engineering
program faculty; otherwise, they are dismissed. Admissions
may be limited by available resources.

Financial Support

A number of one-quarter-time and one-half-time teaching
and research assistantships are available for graduate
students. Awards are based on students’ academic records
and assessment of their potential contribution to the research
and teaching goals of the program. Advanced graduate students also may qualify for appointments as graduate teaching fellows. Contact the chair of the Department of Industrial and Systems Engineering for details.

Career Advancement

Industrial and systems engineers have many opportunities for employment and service in industrial, government, research, and public service organizations. Employment opportunities are among the most varied in the engineering field. Industrial and systems engineers hold positions as advisors to management or may participate directly in management decisions. Representative job titles include industrial engineer, manufacturing engineer, systems analyst, quality specialist, operations research analyst, internal consultant, human factors specialist, supervisor, and manager. Industrial and systems engineers are employed by manufacturing and energy firms, wind turbine manufacturers, government agencies, and service organizations such as airlines, banks, hospitals, health care groups, and consulting companies. On average, 93-98 percent of graduates are employed in their field of study or pursuing advanced education within seven months of graduation.

Engineering Professional Development (EPD) develops and promotes experiential education and professional opportunities for students in the College of Engineering. Professional staff coordinate the college's co-op and internship program, engage in employer outreach, and provide opportunities for students to network with employers, including an engineering career fair each semester and other programming related to career development.

EPD also offers individual advising and class presentations on résumé and cover letter preparation, job and internship search strategies, interviewing skills, and job offer evaluation.