Civil and Environmental Engineering

Chair

• A. Allen Bradley Jr.

Undergraduate majors: civil engineering (B.S.E.); environmental engineering (B.S.E.)
Graduate degrees: M.S. in civil and environmental engineering; Ph.D. in civil and environmental engineering
Faculty: https://cee.engineering.uiowa.edu/people
Website: https://cee.engineering.uiowa.edu/

Civil and environmental engineering is one of the three largest fields of engineering. It traditionally has been concerned with infrastructure facilities that are both large in scale and essential to modern life. Civil and environmental engineering projects include transportation systems and their components, such as bridges, highways, public transit systems, railways, harbors, airports, and seaports; large-scale structures and office buildings that provide enclosed working and living space; environmental and hydraulic systems that provide clean water and air, including filtration plants and distribution systems for municipal and industrial water supplies, wastewater treatment plants, dams, levees, and irrigation systems.

Growth areas of civil and environmental engineering include water sustainability, infrastructure development, construction management, computer-aided design, hazardous waste management, and engineered environmental systems. In the future, civil and environmental engineers will be called upon to design structures for earth, prevent erosion and sedimentation of our rivers, predict effects of global climate change on the environment, provide modern and efficient transportation systems, and ensure the quality of our air and our surface waters and groundwaters.

In planning and design, civil and environmental engineers work with other engineers, architects, landscape architects, planners, economists, financiers, sociologists, lawyers, and other specialists as members of the design team. Some civil and environmental engineers work in engineering offices; others may be called upon to construct or supervise outdoor projects they have designed. These field assignments, many of which are in remote and fascinating parts of the world, are particularly appealing to many civil and environmental engineers. There also is significant potential for entrepreneurial work by civil and environmental engineers as they start their own companies.

In addition to the degree programs offered by the Department of Civil and Environmental Engineering, the department also participates in two Graduate College programs: Applied Mathematical and Computational Sciences, an interdisciplinary doctoral program; and Transportation Studies, a graduate certificate program.

Certificates

Sustainable Water Development

The graduate Certificate in Sustainable Water Development trains science, technology, engineering, and mathematics (STEM) students to address future challenges of water scarcity and variability while also meeting the food and energy demands of Earth’s growing population. The Department of Civil and Environmental Engineering administers the certificate program; see the Certificate in Sustainable Water Development in the Catalog.

Related Certificate: Transportation Studies

The Transportation Studies Program offers the graduate Certificate in Transportation Studies. The program focuses on the varied and complex problems of transportation and on interdisciplinary approaches to addressing them. The Departments of Civil and Environmental Engineering, Industrial and Systems Engineering, Mechanical Engineering (College of Engineering), Economics (Tippie College of Business), and the School of Urban and Regional Planning (Graduate College) participate in the program.

The certificate is coordinated by the School of Urban and Regional Planning. See the Certificate in Transportation Studies in the Catalog.

Programs

Undergraduate Programs of Study

 Majors

• Major in Civil Engineering (Bachelor of Science in Engineering)
• Major in Environmental Engineering (Bachelor of Science in Engineering)

Graduate Programs of Study

 Majors

• Master of Science in Civil and Environmental Engineering
• Doctor of Philosophy in Civil and Environmental Engineering

Facilities

Undergraduate Teaching Laboratories

Computer-Aided Design Laboratory

The Computer-Aided Design Laboratory contains 17 work stations, all connected to the engineering computer network, that allow students to access AutoCAD, Pro/ENGINEER, and a full complement of structural, hydraulic, transportation, and environmental software to support work on engineering design projects.

Environmental Engineering Teaching Laboratory

Located at the Water Plant, this laboratory is designed to provide undergraduate students hands-on experience in water laboratory testing and analysis. It serves several program-required and elective courses with a laboratory component.

Fluids Laboratories

The fluid laboratories comprise a trio of rooms. The Fluids Fundamentals Lab includes recently built equipment and ones that have been around for decades. The Advanced Measurements Lab includes some of the larger experimental
devices, such as a wind tunnel and a towing tank. The third laboratory, the Fluids Workshop, is a space in which students can perform their experiments.

Hydraulics Laboratory
The Hydraulics Laboratory experimental facilities include flumes and pipe systems to perform experiments on open-channel and closed-conduit flows. Instruments are available for measuring various flow quantities such as discharge, pressure, velocity, and temperature.

Soils Laboratory
The teaching laboratory contains state-of-the-art equipment to provide hands-on experience to students and allows them to keep their skills on soil properties and characterization, soil stability, soil strength, consolidation/compaction for highway embankments, and foundations of structures. The teaching lab is an air-conditioned, temperature-controlled laboratory with an extensive number of different types of equipment. It is used twelve times throughout the year to perform four teaching sessions to groups of junior-level students.

Structures, Mechanics, and Materials Laboratory
The Structures, Mechanics, and Materials Laboratory is a teaching lab where students conduct experiments to quantify the physical and mechanical properties of construction materials. Equipment is available to test metals, aggregates, concrete, and asphalt.

Graduate Laboratories
Structures, Mechanics, and Materials
Facilities for computations, materials testing, geotechnical experiments, and small-scale structural testing are available for research and teaching. Faculty, staff, and students in structures, mechanics, and materials (SMM) have access to the computing resources of the Engineering Technology Center and the Center for Computer-Aided Design (CCAD). Both centers continuously update their computing facilities to maintain pace with the rapidly changing field.

A wide range of experimental facilities are available for testing structural materials such as Portland cement concrete, asphalt, metals, timber, and composites. These facilities include several loading frames (purely uniaxial, purely torsional, and axial-torsional) that are available with computer-based control and data collection systems. Facilities for creep testing, triaxial soil testing, and high-cycle fatigue testing also are available. The laboratories have a variety of ovens and other facilities for preparation and treatment of test specimens.

Four well-equipped physical testing laboratories are dedicated to SMM teaching and research: the Civil Materials Laboratory, Soil Mechanics Laboratory, Plasticity Laboratory, and the Asphalt Laboratory. The Civil Materials Laboratory currently has a small-scale single-degree-of-freedom shaker table. Faculty, staff, and students have access through CCAD to a six-degree-of-freedom man-rated shaker table with 4000-pound payload and a 12-camera Vicon motion-capture system.

Transportation Engineering
The department's Asphalt Laboratory is equipped with a set of Superpave testing equipment and asphalt mixture performance testing equipment which can measure dynamic modulus and flow number of asphalt mixtures. The lab has a Hamburg Wheel Tracking Device for measuring the moisture sensitivity of asphalt mixtures; asphalt foaming equipment for mix design of cold in-place recycled asphalt using foamed asphalt; and equipment for Marshall mix design, indirect tensile strength test, and volumetric analysis of asphalt mixtures. The Asphalt Laboratory is one of the department's group of laboratories for testing the strength behavior of other materials.

Water and the Environment
The teaching and research functions of the department are closely connected to the research activities of IIHR—Hydroscience & Engineering. The institute houses some of the most modern research facilities in the world, including a 100-meter floating tank, a wave basin facility for ship hydrodynamics research, several flumes, an array of field instrumentation for hydrologic experiments, extensive laboratory space for hydraulic modeling, state-of-the-art instrumentation for flow measurements and visualization, and comprehensive computational facilities.

Research related to ecohydraulics and the environment takes place at the Lucille A. Carver Mississippi Riverside Environmental Research Station. IIHR—Hydroscience & Engineering operates the 250-square-foot facility, which is located on the Mississippi River near Muscatine, Iowa. The station provides engineers and biological scientists with an ideal facility in which to examine the multifaceted ecohydrologic processes of the upper Mississippi. It is equipped with water quality laboratories, research boats, and a seminar room.

The Environmental Engineering and Science Laboratories provide state-of-the-art facilities, equipment, and expertise to support both undergraduate and graduate-level instruction and research. The labs support research in contaminant fate and transport in various media (air, water, soil, plants, and microbes), drinking water disinfection and distribution, wastewater treatment, geochemical-contaminant interactions, bioremediation, and phytoremediation. They also provide resources for analytical chemistry, electrochemistry, molecular biology, microscopy, computer modeling, and simulated environments on the bench- and pilot-scale levels.

The Environmental Engineering and Science Laboratories are affiliated with the University’s Center for Health Effects of Environmental Contamination, Center for Global and Regional Environmental Research, and the UI’s Environmental Health Sciences Research Center, an affiliate of the National Institute of Environmental Health Sciences (NIEHS).

Courses

Civil and Environmental Engineering Courses

CEE:0000 Civil Engineering Internship/Co-op 0 s.h. Civil engineering students participating in the Cooperative Education Program register in this course during work assignment periods; registration provides a record of participation in the program on the student's permanent record card. Requirements: admission to the Cooperative Education Program.
CEE:1010 Introduction to Careers in Environmental Engineering 0 s.h.
Past, present, and future roles of environmental engineers in society; introduction to the discipline's historical roots and early visionary leaders in sanitation engineering and public health; growth during the environmental movement, and current role of environmental engineers in modern society as stewards for clean air, water, and energy; range of career opportunities available to environmental engineering majors, particularly in the emerging role of ambassadors for sustainable development.

CEE:1030 Introduction to Earth Science 3-4 s.h.
Relationships between plate tectonics, geologic time, and the rock cycle with volcanoes and igneous, sedimentary, metamorphic rocks; fossils; radioactive isotopes; landscape evolution; mountain building; natural resources; their impacts on civilization. GE: Natural Sciences with Lab; Natural Sciences without Lab. Same as EES:1030.

CEE:1031 Introduction to Earth Science Laboratory 1 s.h.
Laboratory component of EES:1030. Requirements: completion of 3 s.h. in EES:1030 or CEE:1030. GE: Natural Sciences Lab only. Same as EES:1031.

CEE:2000 Civil and Environmental Engineering Sophomore Seminar 0 s.h.
Introduction to civil and environmental engineering curriculum and profession; presentations by senior undergraduate students, faculty, and professionals; lifelong learning skills and requirements for professional licensure in civil engineering. Requirements: sophomore standing.

CEE:2010 Civil and Environmental Engineering Professional Practice and Ethics 1 s.h.
Practical issues associated with civil engineering practice; topics may include safety and OSHA regulations, engineering specifications/building codes, contracts, liability, and ethics; role that a professional engineering license plays in the student's career and professional/ethical obligations that come with it; history of civil engineering and development of civil practice in the United States.

CEE:2015 Civil Engineering Tools 2 s.h.
Tools and methods used in civil engineering career: AutoCAD, programming, project estimating, heavy equipment productivity estimation, and earthwork estimation.

CEE:2050 Severe and Unusual Weather 3 s.h.
Basic weather concepts behind severe weather phenomena and essential safety information; how weather events cause billions of dollars in damage and thousands of casualties; winter storms can impact half of the nation, paralyzing the transportation network with icy roads and wind driven snow; tornadoes can strike within minutes tearing apart homes; hurricanes can destroy entire communities with strong winds, heavy rain, and deadly storm surge; how understanding severe weather and knowing what to do before, during, and after an event can significantly reduce injury, deaths, and property damage. Same as CBE:2050.

CEE:2240 Digital Drafting with AutoCAD 3 s.h.
Basic principles of 2-D and 3-D computer-aided drafting; use of AutoCAD software to draw plans, elevations, and sections for objects and interior spaces. Prerequisites: CERM:2010 or SCLP:2810 or TDSN:2210 or MTLS:2910. Same as TDSN:2240.

CEE:3001 Leadership Skills for Engineers 1 s.h.
Survey of leadership ideas and principles as applied to situations commonly encountered in civil engineering practice, especially as they relate to challenges that beginning engineers face; speakers in selected engineering professions provide context and examples; exercises on leadership principles. Requirements: junior standing in civil and environmental engineering.

CEE:3002 Technical Communication in Civil and Environmental Engineering 1 s.h.
Development of communication skills through writing and oral presentations; impact of engineering solutions in a global, economic, environmental, and societal context; writings and presentations on current or historical engineering solutions; exposure to professionals with significant experiences to share in these areas. Requirements: junior standing.

CEE:3003 Project Management Skills 1 s.h.
Review and extension of civil and environmental engineering project management skills in preparation for capstone senior design course; project scheduling, cost estimating, contract types, construction phasing; review for Fundamentals of Engineering Exam (FE) and practice tests in four subdisciplinary areas. Requirements: senior standing.

CEE:3142 Quality Control 3 s.h.
Basic techniques of statistical quality control; application of control charts for process control variables; design of inspection plans and industrial experimentation; modern management aspects of quality assurance systems. Offered fall semesters. Prerequisites: STAT:2020 or MSCI:9100 or (STAT:3100 and STAT:3101 and STAT:3200). Same as ISE:3600, STAT:3620.

CEE:3155 Principles of Environmental Engineering 4 s.h.
Water supply and treatment processes; wastewater treatment processes; processes for air pollution control, groundwater remediation; solid and hazardous waste management. Prerequisites: CHEM:1100.

CEE:3328 Fluvial Geomorphology 3 s.h.
Hydrologic principles, stream channel processes, and fluvial geomorphology within drainage basin systems; spatial and temporal variations in water distribution, analysis of hydrological data, flow mechanisms, sediment transport, forecasting procedures, hydrograph construction, modeling. Requirements: EES:3020 or another 3000-level geology or hydraulics course. Same as EES:3380.

CEE:3371 Principles of Hydraulics and Hydrology 3 s.h.
Hydraulics of pressure conduits and open channels, dimensional analysis, flow measurements, hydraulic machinery, laboratory. Prerequisites: ENGR:2510.

CEE:3390 Water Treatment 4 s.h.
Physical, chemical, and biological processes and operations to remove and treat chemical and pathogenic pollutants and protect human and environmental health; relevant to drinking water, municipal wastewater, water reuse, stormwater, industrial process water, agricultural wastewater; modern technologies and appropriate designs for the developing world; theory and applications; hands-on laboratory. Prerequisites: CEE:3155 and ENGR:2510.

CEE:3530 Geomechanics 4 s.h.
Identification and classification of earth materials; hydraulic and mechanical properties of soils; soil improvement; laboratory testing. Prerequisites: ENGR:2750.
CEE:3533 Principles of Structural Engineering 4 s.h.
Fundamental principles of structural analysis applied to statically determinate and indeterminate structures, continuous beams, trusses, and frames; external and internal equilibrium, compatibility of deformation, influence lines, virtual work; parallel use of classical and matrix formulation; slope deflection, flexibility and stiffness methods; use of computers. Prerequisites: ENGR:2750.

CEE:3586 Civil Engineering Materials 3 s.h.
Structure, strength and failure, durability, deformation, practice, and processing for primary construction materials systems, including steel, aluminum, concrete, asphalt, fiber-reinforced composites, masonry, timber. Prerequisites: ENGR:2750.

CEE:3763 Principles of Transportation Engineering 3 s.h.
History of transportation modes, new transport technologies, traffic operations and control, economic evaluation of transport alternatives, transportation planning, roadway design and construction, route location, preventive maintenance strategies. Requirements: sophomore standing.

CEE:3783 Surveying and Remote Sensing 3 s.h.
Engineering surveying measurements, methods, computations. Prerequisites: ENGR:1100.

CEE:3790 Resilient Infrastructure and Emergency Response 3 s.h.
Concepts of resilient cities with specific emphasis on role of infrastructure and built environment; risk analysis, hazard mitigation and emergency response to various threats; resiliency through good design.

CEE:3996 Civil and Environmental Engineering: Engineering Project 1 s.h.
Support for student learning associated with an engineering project; students work as a team to design and fabricate a product; student projects are often associated with a contest or competitions (e.g., steel bridge, concrete canoe).

CEE:3997 Engineering Service Project 1-3 s.h.
Provides support of student learning associated with a variety of international engineering service projects facilitated by the Department of Civil and Environmental Engineering; service projects are usually designed and built as part of an Engineers Without Borders USA and/or a Bridges to Prosperity (Continental Crossings) approved program; active involvement by students in these organizations required.

CEE:3998 Individual Investigations: Civil Engineering arr.
Individual projects for civil engineering undergraduate students: laboratory study, engineering design project, analysis and simulation of an engineering system, computer software development, research.

CEE:4097 Topics in Teaching and Learning 1 s.h.
Overview of Iowa's hydroclimate; emphasis on discharge, rainfall, and temperature; how to address basic research questions related to Iowa's climate and extreme events; hands-on exercises.

CEE:4102 Groundwater 3 s.h.
Groundwater quality and quantity; Darcy's Law, 2-D flow equation, unsaturated zone, contaminant transport, redox reactions, drinking water quality, bioremediation; laboratories in permeameter testing, porous media grain size analysis, pump testing, monitoring well installation.

CEE:4103 Water Quality 3 s.h.
Sources, availability, uses, characteristics, criteria, best management practices for surface waters; protection of waters impaired by eutrophication, soil erosion and sedimentation; pathogenic organisms, habitat destruction, wastewater discharges, contaminated sediments, atmospheric deposition, watershed development, invasive species, irrigation return flows, stormwater discharges, nonpoint sources, agricultural runoff; laboratory component, measurement of water quality characteristics in the field. Requirements: junior or higher standing.

CEE:4104 Groundwater Modeling 3 s.h.
Groundwater flow and contaminant transport modeling; numerical methods, applications of groundwater modeling to water supply, groundwater resources evaluation, remediation design using software: GMS (MODFLOW, MODPATH, and MT3D). Prerequisites: MATH:1860 and (EES:4630 or CEE:4103). Same as EES:4660.

CEE:4107 Sustainable Systems 3 s.h.
New and emerging concepts in sustainable systems design and assessment. Same as CBE:4410.

CEE:4118 Probabilistic Methods in Hydroscience 3 s.h.
Common probabilistic models used in hydrology, hydraulics, and water resources; derived distributions; multivariate models and estimation of model parameters; analysis of data and model building; uncertainty analysis. Prerequisites: STAT:2020 and MATH:2560.

CEE:4119 Hydrology 3 s.h.
Overview of fundamental processes in water cycle, including precipitation, evaporation, infiltration, and runoff; quantitative approaches for predicting streamflow and design discharges; applications to flood hazard assessment and stormwater management. Prerequisites: ENGR:2510.

CEE:4135 Structural Modeling and Health Monitoring 3 s.h.
Measurements, structural modeling, structural analysis, stiffness method, trusses and frames, structural testing, modal analysis. Prerequisites: CEE:3533 and ENGR:2750.

CEE:4146 Multiscale Hydrology: Introduction to Multiscale Hydrologic Phenomena 3 s.h.
Hydrologic principles over the last century developed from experimentation at laboratory and small plot scales; major scientific and engineering challenges, including links between statistical fluctuations that data exhibits; physical, chemical, and biological principles through appropriate mathematical theories, numerical models, and field observations; coupled hydrologic processes at larger scales using newly built on abstraction; observations used in hydrologic engineering at larger scales for several decades and missing a coherent theory that ties them together. Prerequisites: MATH:6600 and ENGR:2510. Requirements: three semesters of calculus and college physics, an introductory hydrology course, and a probability and statistics course.

CEE:4150 Environmental Chemistry 3 s.h.
Principles of general, physical, organic chemistry applied in water and air systems; emphasis on qualitative and quantitative understanding of chemical kinetics and equilibrium; acid-base reactions, complex formation, precipitation, dissolution, and oxidation-reduction reactions; organic nomenclature. Prerequisites: CHEM:1120. Same as CBE:4420.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEE:4157</td>
<td>Environmental Engineering Design</td>
<td>3 s.h.</td>
</tr>
<tr>
<td></td>
<td>Application of physical, chemical, and biological operations and processes to the design of water and wastewater treatment systems; applications in solid and hazardous waste treatment. Prerequisites: CEE:3155</td>
<td></td>
</tr>
<tr>
<td>CEE:4158</td>
<td>Solid and Hazardous Wastes</td>
<td>3 s.h.</td>
</tr>
<tr>
<td></td>
<td>Sources, characteristics, collection, disposal of solid and hazardous wastes; environmental impacts of hazardous waste management; resource recovery systems. Requirements: for OEH:4920—OEH:4240. Same as OEH:4920.</td>
<td></td>
</tr>
<tr>
<td>CEE:4159</td>
<td>Air Pollution Control Technology</td>
<td>3 s.h.</td>
</tr>
<tr>
<td></td>
<td>Sources, environmental and health impacts, regulations, modeling of air pollution; processes and alternative strategies for control; global climate considerations. Same as CBE:4459, IGPI:4159.</td>
<td></td>
</tr>
<tr>
<td>CEE:4160</td>
<td>Introduction to Bridge Engineering</td>
<td>3 s.h.</td>
</tr>
<tr>
<td></td>
<td>Bridge engineering and design; history of the bridge; factors that affect bridge design; bridges according to use (e.g., road, rail, pedestrian and bicycle) and type (e.g., suspension, cable stay, truss); how sustainability concepts may impact bridge design; substantial design exercise. Prerequisites: CEE:3533.</td>
<td></td>
</tr>
<tr>
<td>CEE:4162</td>
<td>Structural Systems for Buildings</td>
<td>3 s.h.</td>
</tr>
<tr>
<td></td>
<td>Detailed analysis and design of gravity and lateral force resisting systems for buildings; roof, floor, and bearing wall gravity systems; steel braced frames, steel and concrete moment frames, and masonry and timber shear walls lateral systems; introduction to tall building structures. Prerequisites: CEE:3533.</td>
<td></td>
</tr>
<tr>
<td>CEE:4164</td>
<td>Design of Wood Structures</td>
<td>3 s.h.</td>
</tr>
<tr>
<td></td>
<td>Framing layout and analysis of wood frame structures for gravity and lateral loads; design of structural members for bending, axial load, and shear, including joists, beams, columns, engineered lumber, bearing walls, shear walls, and diaphragms; introduction to connection design. Prerequisites: CEE:3533.</td>
<td></td>
</tr>
<tr>
<td>CEE:4170</td>
<td>Transportation Demand Analysis</td>
<td>3 s.h.</td>
</tr>
<tr>
<td></td>
<td>City planning procedures and traffic engineering techniques applied to transportation problems; trip generation, distribution, assignment, mode choice models; travel surveys, data collection techniques; arterial flow, intersection performance, parking; transit system analysis. Same as URP:4262.</td>
<td></td>
</tr>
<tr>
<td>CEE:4180</td>
<td>Fundamentals of Atmospheric Science</td>
<td>3 s.h.</td>
</tr>
<tr>
<td></td>
<td>Review of fundamental principles in atmospheric sciences needed for study of interdisciplinary topics involving the Earth’s atmosphere; understanding weather and climate processes to address problems in engineering; hydrometeorology of rainfall and its measurement by remote sensing; impact of climate anomalies and climate change on water resources; exchange of water, energy, and chemicals at the land-atmosphere boundary; forecasting of atmospheric chemistry and air quality. Prerequisites: ENGR:2510.</td>
<td></td>
</tr>
<tr>
<td>CEE:4187</td>
<td>Statistics for Experimenters</td>
<td>3 s.h.</td>
</tr>
<tr>
<td></td>
<td>Application of statistical techniques to evaluate data derived from experimental samples designs; use of spreadsheets, statistical software; design and analysis of experiments; regression analysis; model building; practical applications. Same as OEH:4540.</td>
<td></td>
</tr>
<tr>
<td>CEE:4317</td>
<td>Remote Sensing</td>
<td>3 s.h.</td>
</tr>
<tr>
<td></td>
<td>Fundamentals of electromagnetic waves, atmospheric radiative transfer, passive remote sensing, weather radar, hydrologic application of remote sensing.</td>
<td></td>
</tr>
<tr>
<td>CEE:4370</td>
<td>Open Channel Flow and Sediment Transport</td>
<td>3 s.h.</td>
</tr>
<tr>
<td></td>
<td>In-depth analysis of governing flow equations; steady uniform flow in channels of different resistance and cross section; flow control sections; specific energy considerations; analysis and computation of gradually varied profiles and spatially varied flow affected by lateral outflow and inflow; unsteady flow; flood routing. Prerequisites: CEE:3371.</td>
<td></td>
</tr>
<tr>
<td>CEE:4371</td>
<td>Water Resources Engineering</td>
<td>3 s.h.</td>
</tr>
<tr>
<td></td>
<td>Planning and economics of varied water resources projects; stochastic basis for design; flood damage mitigation, reservoirs, river morphology, economic analysis of water projects, urban water requirements, water supply, hydroelectric power systems, river navigation; contemporary civil-engineering problems and issues associated with water infrastructure development. Corequisites: CEE:3371.</td>
<td></td>
</tr>
<tr>
<td>CEE:4374</td>
<td>Water Resource Design</td>
<td>3 s.h.</td>
</tr>
<tr>
<td></td>
<td>Prerequisites to storm water management systems design, including design flows and rates; analysis and design of storm sewers, detention basins, street and highway drainage facilities, culverts, dams, spillways, measures for energy dissipation; review of wastewater transfer systems and design. Prerequisites: CEE:3371.</td>
<td></td>
</tr>
<tr>
<td>CEE:4378</td>
<td>Hydrometeorology</td>
<td>3 s.h.</td>
</tr>
<tr>
<td></td>
<td>Atmospheric thermodynamics; precipitation processes; evaporation; infiltration; surface runoff; hydrographs, runoff relations; runoff hydrography; storage problems; frequency, intensity, duration studies of storms, floods, droughts; hydrometeorological observations and network design; watershed modeling; urban hydrology climate.</td>
<td></td>
</tr>
<tr>
<td>CEE:4385</td>
<td>International Perspectives in Water Sciences and Management</td>
<td>3 s.h.</td>
</tr>
<tr>
<td></td>
<td>Internationalization and water, with focus on a country or a world region; intensive, in-depth exposure to complex issues that affect planning and execution of water projects in large-scale watersheds.</td>
<td></td>
</tr>
<tr>
<td>CEE:4410</td>
<td>Interdisciplinary Scientific Visualization</td>
<td>3 s.h.</td>
</tr>
<tr>
<td></td>
<td>Fundamentals of data visualization and practice communicating with data; techniques and algorithms for creating effective visualizations for engineers based on principles from graphic design, visual arts, human perception, and effective storytelling; targeted towards students interested in using visualization in their own work, as well as students interested in building better visualization tools and systems; examples might include interactive visualization systems, augmented/virtual reality applications, data and visual analytics tools, or new applications of existing visualizations methods.</td>
<td></td>
</tr>
<tr>
<td>CEE:4506</td>
<td>Design of Concrete Structures</td>
<td>3 s.h.</td>
</tr>
<tr>
<td></td>
<td>Fundamental analysis and design of reinforced concrete members and structures, flexure, shear, bond, continuity, beams, one-way slab system; columns. Prerequisites: CEE:3533.</td>
<td></td>
</tr>
<tr>
<td>CEE:4511</td>
<td>Scientific Computing and Machine Learning</td>
<td>3 s.h.</td>
</tr>
<tr>
<td></td>
<td>Numerical methods in scientific computing; root problems and optimization; linear algebraic equations; eigenvalue problems; numerical differentiation and integration; interpolation and curve-fitting; initial value and boundary value problems; machine learning in regression, classification, and clustering problems; Python programming and packages. Prerequisites: MATH:2560. Same as ME:4111.</td>
<td></td>
</tr>
</tbody>
</table>
CEE:4512 Engineering Design Optimization 3 s.h.
Engineering design projects involving modeling, formulation, and analysis using optimization concepts and principles; linear and nonlinear models, optimality conditions, numerical methods. Prerequisites: ENGR:2110 and MATH:2550. Requirements: junior standing. Same as ME:4112.

CEE:4515 Computer-Aided Engineering 3 s.h.
Computational engineering modeling and simulation, geometric modeling, grid generation, finite-element and finite-volume methods, uncertainty analysis, optimization, engineering applications. Prerequisites: ME:3052 and ENGR:2750. Same as ME:4110.

CEE:4532 Fundamentals of Vibrations 3 s.h.
Vibration of linear discrete and continuous mechanical and structural systems; harmonic, periodic, and arbitrary excitation; modal analysis; applications. Prerequisites: ENGR:2750. Same as ME:4153.

CEE:4533 Finite Element I 3 s.h.
One- and two-dimensional boundary value problems; heat flow, fluid flow, torsion of bars; trusses and frames; isoparametric mapping; higher order elements; elasticity problems; use of commercial software. Prerequisites: ENGR:2750. Same as IGPI:4115.

CEE:4535 Design of Steel Structures 3 s.h.
Concepts and procedures in steel design and continuous; LRFD (load and resistance factor design) methodology for beams/columns; analysis and design of indeterminate structures. Prerequisites: CEE:3533.

CEE:4539 Foundations of Structures 3 s.h.
Application of soil mechanics to analysis of structural foundations; slope stability analysis; bearing capacity and settlement of shallow and deep foundations; retaining structures, braced cuts, reinforced earth structures; usage of computational models; subsurface exploration methods. Prerequisites: CEE:3530.

CEE:4560 Pavement Engineering 3 s.h.
Fundamental design principles; characterization and testing of asphalt and concrete paving materials; stresses and stain development within pavement structure; basic principles of mechanistic-empirical pavement design procedures. Prerequisites: CEE:3530.

CEE:4720 Transportation Infrastructure Construction and Management 3 s.h.
Analytical methods for developing transportation infrastructure construction and management systems; e-construction, transportation infrastructure condition evaluation, performance modeling, maintenance and rehabilitation optimization, asset management, development of transportation infrastructure construction and management system; application of information technology and mobile computing to solving transportation infrastructure construction and management problems. Prerequisites: CEE:3763.

CEE:4762 Design of Transportation Systems 3 s.h.
Overview of different modes within transportation systems; concepts of sustainability and livability in transportation system design; derivation of standards for geometric design of highways; roundabout design; cross-sectional and longitudinal geometric design of highways. Prerequisites: CEE:3763.

CEE:4763 Traffic Engineering 3 s.h.
Design of traffic control devices; evaluation and analysis of intersections and transportation networks using appropriate computer software. Prerequisites: CEE:3763.

CEE:4788 International Perspectives: Xicotepec 2-3 s.h.
Introduction to providing service to a community in a less developed country; student projects intended to improve community life in Xicotepec. Requirements: P3 standing. Same as GHS:4126, PHAR:8788, THTR:4265.
CEE:5097 Coaching Seminar on Communicating Water Science 0 s.h.
Presentation of student research on water, energy, and food in the 21st century; students receive live, immediate feedback from their peers and faculty coaches on best practices to improve their oral communication skills.

CEE:5098 Graduate Seminar in Structures, Materials, Mechanics, and Transportation 0 s.h.
Presentation and discussion of recent advances and research in structures, mechanics, materials, and transportation engineering by guest lecturers, faculty, and students. Requirements: graduate standing.

CEE:5100 Cultural Competence for Sustainable Water Development Engineers 3 s.h.
Skills needed to be culturally responsive to a wide range of communities in which sustainable water development engineering students interact with during their professional careers; series of three workshops; focus on how to identify cultural strengths that support development in underserved, resource-constrained communities; how to engage, build trust, and bridge differences with diverse stakeholders; how to conduct culturally sensitive interviews; how to communicate effectively across culture; preparation for Capstone Community Engagement project. Requirements: graduate standing in sustainable water development program.

CEE:5115 Atmospheric Chemistry and Physics 3 s.h.
Principal chemical and physical processes affecting atmospheric trace gas and pollutant cycles; emphasis on atmospheric photochemistry, aerosol science, major sources, and removal processes. Corequisites: CBE:3120. Same as CBE:5425.

CEE:5137 Composite Materials 3 s.h.
Mechanical behavior of composite materials and their engineering applications; composite constituents (fibers, particles, matrices) and their properties and behavior; macromechanical behavior of composite laminae; micromechanical predictions of composite overall properties; classical lamination theory; composite beams and plates. Prerequisites: ENGR:2750. Same as ME:5167.

CEE:5153 Fundamentals of Environmental Sampling and Analysis 3 s.h.
Laboratory experiments to demonstrate important concepts in environmental chemistry and to familiarize students with procedures used to characterize water and wastewater and evaluate certain treatment processes. Prerequisites: CHEM:1120. Corequisites: CEE:5152.

CEE:5154 Environmental Microbiology 3 s.h.
Microorganisms possess diverse metabolic functions, inhabit a myriad of environments, and play important roles in global biogeochemical cycles; environmental microbiology concepts with emphasis on metabolic diversity and application of molecular methods to characterize microbial community structure and function in ecosystems (polymerase chain reaction, next-generation DNA sequencing, proteomics); biodegradation and bioremediation of hydrocarbon pollutants in groundwater, biological processes relevant to food-water-energy nexus (nitrogen cycling in agriculturally impacted watersheds), and microbial ecology of marine environments (hydrothermal vent plumes, oxygen minimum zones). Corequisites: CEE:5152.

CEE:5155 Biological Treatment Processes 3 s.h.

CEE:5156 Physical and Chemical Environmental Processes 3 s.h.
Theory of physical and chemical operations and processes in water and wastewater treatment, including fundamental aspects of process dynamics; lectures, laboratory. Prerequisites: CEE:4150. Corequisites: CEE:3155.

CEE:5179 Continuum Mechanics 3 s.h.
Mechanics of continuous media; kinematics of deformation, concepts of stress and strain; conservation laws of mass, momentum and energy; constitutive theories; boundary and initial value problems. Prerequisites: ENGR:2750 or ENGR:2510. Same as ME:5179.

CEE:5186 Introduction to Hydroinformatics 3 s.h.
Hydroinformatics as the study, design, development, and deployment of cyberinfrastructure systems for hydrologic data collection, distribution, interpretation, visualization, and analysis to aid in the understanding and management of geospatial data; introduction to fundamental and advanced hydroinformatics concepts and procedures including automated data collection, relational databases, data management, metadata and semantics, data formats and standards, data transformations and processing to support modeling and analysis, and scientific visualization of hydroclimate data.

CEE:5188 Computational Methods in Water Resources 3 s.h.
Computational methods for solution of problems; emphasis on problems in water resources; standard methods for problem solutions using computers; problems of interest in hydraulics/hydrology. Recommendations: some programming ability.

CEE:5210 Developing Professional Service Business 2-3 s.h.
Use of professional skills and functional knowledge in creating a specialized service business. Same as ENTR:9000.

CEE:5236 Optimization of Structural Systems 3 s.h.
Advanced topics; optimization of structural topology, shape, and material; finite dimensional dynamic response optimization, sensitivity analysis, distributed parameter systems; projects. Same as BME:5720.

CEE:5310 Informatics for Sustainable Systems 3 s.h.
Introduction to fundamental and advanced environmental informatics concepts and procedures including automated data collection, data management, data transformations, and processing to support modeling and analysis; scientific visualization of environmental data to support management of food, energy, and water (FEW) resources; sustainability in FEW systems. Same as IGPI:5311.

CEE:5350 Watershed Hydrology and Ecosystem Processes 3 s.h.
Introduction to hydrologic and ecosystem processes within a watershed; description of water, energy, and nutrient cycling in watersheds; focus on hydrologic and water-quality issues in agricultural Midwest; watershed modeling techniques, ecosystem goods and services, and selected case studies in watershed and ecosystem management problems. Requirements: graduate standing.
CEE:5369 Intermediate Mechanics of Fluids 3 s.h.
Basic concepts and definitions; pressure distribution in a fluid; governing equations and boundary conditions; integral and differential analysis; dimensional analysis and similarity; experimental analysis; laminar and turbulent internal and external flows; potential flows; engineering applications. Prerequisites: ENGR:2510. Same as ME:5160.

CEE:5372 Experimental Methods in Fluid Mechanics and Heat Transfer 3 s.h.
Hands-on experience in methodology of conducting experiments in fluid mechanics and heat transfer from design to data acquisition and processing; essential theoretical elements, experimental methodologies, data acquisition systems, uncertainty analysis; wide variety of instruments for fundamental and applied experimentation; work in small groups; design, implement, test, and report an experiment in area of interest. Same as ME:5162.

CEE:5374 Environmental Fluid Dynamics 3 s.h.
Introduction to the fundamentals of fluid dynamics with emphasis on application to natural flows of air and water in environmental systems; physical laws describing fluid dynamics, focus on development of physical insight of environmental fluids problems and strategies for solving them; analysis tools for solving various problems related to the movement of mass, momentum, and energy in natural and urban environments; systems include the atmospheric boundary layer, rivers, and streams, lakes, wetlands, and coastal zones; topics include incompressible viscous fluid flows, turbulence, waves, effects of rotation and stratification, scaling analysis, and scalar transport. Prerequisites: ENGR:2510. Requirements: working knowledge of multivariate calculus, partial differential equations, statistics, hydrology/hydraulics, and elementary fluid mechanics.

CEE:5380 Fluid Flows in Environmental Systems 3 s.h.
Introduction to environmental fluid flows and transport processes with focus on application and developing a language of environmental fluid mechanics; topics include physical and mathematical description of conservation and transport laws, statistical techniques for analyzing environmental flow data, scaling and similarity, stratification, turbulent flux measurement and modeling, environmental boundary conditions; application to surface waters and the planetary boundary layer; applied project involving collection and analysis of environmental flow data.

CEE:5390 PCBs in the Environment 3 s.h.
Polychlorinated biphenyls (PCBs) as potent carcinogens and linked to metabolic syndrome, autism, learning disabilities, hearing loss, and neurological disorders; how these compounds become to be such ubiquitous environmental pollutants; what the impact of their presence is; how sites are remediated and exposures reduced; in-depth examination through literature review, laboratory experiments, computational modeling, final written reports, and presentations. Recommendations: laboratory experience.

CEE:5410 Politics and Economics of the Food, Energy, Water Nexus 3 s.h.
Focus on the relationships between food, energy, and water resources; current and future political and economic frameworks that shape the food, energy, and water nexus.

CEE:5440 Foundations of Environmental Chemistry and Microbiology 3 s.h.
Investigation of chemical and biological processes at the food-energy-water nexus; example topic areas include biogeochemical cycling of nutrients, biomass conversion, resource recovery from wastewater, removing pollutants from drinking water sources, water reuse, engineered natural treatment systems, pollutant transformation and control, treatment of process waters. Requirements: undergraduate senior standing or graduate standing.

CEE:5460 Water Quality and Flow 3 s.h.
Laboratory and field experiments to promote student learning of flow-dependent movement and associated environmental transformation of surface water and groundwater pollutants; exploration of water quality and flow fundamentals needed to design and numerically model treatment reactors for small-community wastewater, urban storm water, and agricultural runoff; emphasis on engineered solutions that couple water quality and flow considerations as potential mitigations for adverse effects on natural water cycle caused by floods and other natural and human-influenced phenomena.

CEE:5513 Mathematical Methods in Engineering 3 s.h.

CEE:5540 Intermediate Mechanics of Deformable Bodies 3 s.h.
Application of equilibrium analyses, strain-displacement relations, and constitutive relationships to practical structural systems and elementary plane elasticity problems. Prerequisites: ENGR:2750. Same as ME:5150.

CEE:5549 Fracture Mechanics 3 s.h.
3-D stress states, definition and criteria for failure, nominal and local yield phenomena, linear elastic and elastic plastic fracture mechanics, plane stress and plane strain fracture toughness, J-Integral, crack opening displacement, environmental assisted cracking, fatigue crack growth, fail safe, and damage tolerant design. Prerequisites: BME:4910 or ME:4055 or ME:5150. Same as ME:5159.

CEE:5578 Application Simulation to Transportation 3 s.h.
Transportation system management and traffic engineering; application of real-time simulation and visualization. Prerequisites: CEE:3763 or CEE:4763. Same as URP:5678.

CEE:5875 Perspectives in Biocatalysis 1-3 s.h.
Applied enzymology, protein design, structure-activity relationships, biosensor technology, microbial transformations, biodegradation of environmental pollutants. Requirements: graduate standing in a participating department supported by the Predoctoral Training Program in Biotechnology. Same as BIOC:5875, CBE:5875, CHEM:5875, MICR:5875, PHAR:5875.

CEE:5990 Structural Engineering Practicum A 2 s.h.
Students select a design project and develop two or more alternative design concepts in consultation with a three-member advisory committee consisting of at least one faculty member and one design professional; entire design process documented in a written report. Prerequisites: CEE:3136 and CEE:4535.
CEE:5991 Structural Engineering Practicum B 1 s.h.
Detailed design development of one of the concepts
developed in CEE:5990; students perform detailed design
calculations using applicable structural analysis and design
software, produce professional quality structural plans
including connection details, and defend design to a three-
member advisory committee. Prerequisites: CEE:5990.

CEE:5993 Community-Centered Problem Solving and
Design 3 s.h.
Analysis, evaluation, and modeling of food-energy-water
systems (FEWS) development challenges faced by resource-
constrained communities in developed and developing
countries; design and development of appropriate solutions to
address disparities in FEWS and anticipate social, economic,
political, technological, human health, and environmental
impacts of these interventions; communication with a diverse
suite of stakeholders using modern forms of media intended
for public engagement and dissemination of research impacts;
demonstration of cultural responsiveness consistent with
social and economic realities of resource-limited communities.

CEE:5998 Individual Investigations: Civil and
Environmental Engineering arr.
Individual projects for civil and environmental engineering
graduate students: laboratory study, engineering design
project, analysis and simulation of an engineering system,
computer software development, research. Requirements:
graduate standing.

CEE:5999 Research: Civil and Environmental
Engineering M.S. Thesis arr.
Experimental and/or analytical investigation of an approved
topic for partial fulfillment of requirements for the M.S. with
thesis in civil and environmental engineering. Requirements:
graduate standing.

CEE:6151 Environmental Systems Modeling 3 s.h.
Mathematical modeling of environmental systems, including
rivers, lakes, estuaries, treatment systems for conventional
and toxic pollutants. Prerequisites: CEE:5152 and CEE:2150
and CEE:3155. Same as IGPI:6151.

CEE:6223 Environmental Boundary Layers 4 s.h.
Fundamentals of environmental boundary layer dynamics
and thermodynamics of natural and engineered systems;
atmospheric boundary layers and aquatic surface layer
dynamics; land-atmosphere interaction, air-water exchange,
and turbulent transport in aquatic ecosystems; turbulence,
surface energy balance, spectral analysis, similarity theory;
flow over homogeneous and heterogeneous surfaces, thermal
stratification effects, measurement, simulation of turbulent
and surface fluxes; applications to environmental modeling,
urban meteorology, ecosystem dynamics, renewable energy,
recent and current research topics. Prerequisites: ENGR:2510.

CEE:6225 Communicating Science 3 s.h.
Writing and speaking about environmental engineering and
science research; key principles of writing with clarity and
cohesion, and practice applying these principles on a piece
of research writing that students are currently working on;
review best practices for presenting research to peers and at
conferences; students are required to share their work with
peers through writing and presentations. Recommendations:
graduate standing in earth and environmental sciences; M.S.
students must be thesis option.

CEE:6253 Environmental Organic Chemistry 3 s.h.
Environmental factors that govern processes that determine
fate of organic chemicals in natural and engineered systems;
knowledge of chemical fate applied toward quantitatively
assessing environmental behavior of organic chemicals;
holistic view on physical-chemical properties of organic
compounds, including aspects of gas-solid partitioning,
bioaccumulation, and transformations in the atmosphere.

CEE:6255 Environmental Biotechnology and
Bioremediation 3 s.h.
Concepts in molecular microbial ecology and bioremediation;
microbial diversity and genetics, evolution of biodegradation
pathways, application of quantitative PCR, high-throughput
amplicon and metagenomic and transcriptomic sequencing,
proteomics, stable isotopes; bioremediation research and
practice. Prerequisites: CEE:5154.

CEE:6259 Advanced Topics in Water and the
Environment 3 s.h.
Advanced topics or areas of study not formally offered in other
civil and environmental courses; topics include environmental
engineering and science, hydraulics, hydrology, water
resources, and sustainable water development.

CEE:6310 Analytical Methods in Mechanical
Systems 3 s.h.
Vector and function spaces; functionals and operators in
Hilbert spaces; calculus of variations and functional analysis
with application to mechanics; Ritz and Galerkin methods.
Prerequisites: ME:5113. Same as ME:6214.

CEE:6372 Environmental Dispersion Processes 3 s.h.
Review of classical diffusion theories; longitudinal dispersion,
transverse and vertical mixing in free-surface turbulent
shear flow; application to natural channels; selected topics
including stream-tube models, mixing and dispersion of
heated effluents. Corequisites: CEE:5369.

CEE:6376 Viscous Flow 3 s.h.
Equations of viscous flow; classical analytical and numerical
solutions; flow regimes and approximations; laminar boundary
layers—equations, solution methods, applications; stability
theory and transition; incompressible turbulent flow—mean-
flow and Reynolds-stress equations, modeling, turbulent
boundary layers and free shear flows. Requirements: for
ME:6260—ME:5160; for CEE:6376—CEE:5369. Same as
ME:6260.

CEE:6520 Watershed Sedimentation 3 s.h.
Exploration of rich and complex field of sediment transport,
geomorphology, and contaminant transport; associated
physical, chemical, and biological processes with associated
mathematical modeling; investigation of current topics not
covered elsewhere, including physical processes affecting
stability/mobility, transport, and fate of soil/sediments;
lack of general understanding in development of fine-scale
sedimentary structure in different systems, particularly
contamination and contamination release; suspension effects
on turbulent flows. Prerequisites: CEE:4370 and CEE:4373.

CEE:6532 Finite Element II 3 s.h.
Computer implementation; plate and shell elements;
mixed and hybrid formulations; nonlinear analysis; recent
development; introduction to boundary element method.
Prerequisites: CEE:4533. Same as IGPI:6216, ME:6215.
CEE:7197 Teaching Undergraduate Science and Engineering
Basic skills to be a successful undergraduate instructor; teaching of technical subjects and solving problems; emphasis on practical applications of lesson material and class demonstrations; techniques for teaching effective classes; opportunity for students to teach; intended for graduating Ph.D. students with a career interest in a university environment.

CEE:7250 Advanced Fracture Mechanics 3 s.h.
Fracture of modern engineering materials; linear-elastic fracture; computational methods; functionally graded materials; elastic-plastic fracture; multiscale fracture and fatigue crack initiation. Prerequisites: ME:5113 and (ME:5159 or CEE:4533). Same as ME:7250.

CEE:7549 Multiscale Modeling 3 s.h.
Computational modeling of engineering materials ranging from molecular to continuum scales, molecular dynamics and Monte Carlo methods, nanoscale continuum modeling, scale-coupling methods. Prerequisites: ME:5143 or CEE:4533. Same as ME:6255.

CEE:7999 Research: Civil and Environmental Engineering Ph.D. Dissertation
Experimental and/or analytical investigation of an approved topic for partial fulfillment of requirements for the Ph.D. in civil and environmental engineering.