Industrial Engineering Courses (Mechanical and Industrial Engineering) (IE)

This is a list of all industrial engineering courses. For more information, see Mechanical and Industrial Engineering.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IE:0000</td>
<td>Industrial Engineering Internship/Co-op</td>
<td>0 s.h.</td>
<td>Industrial engineering students participating in the Cooperative Education Program register in this course during work assignment periods; registration provides a record of participation in the program on the student's permanent record. Requirements: admission to Cooperative Education Program.</td>
</tr>
<tr>
<td>IE:1000</td>
<td>First-Year Seminar</td>
<td>0-1 s.h.</td>
<td>Small discussion class taught by a faculty member; topics chosen by instructor; may include outside activities (e.g., films, lectures, performances, readings, visits to research facilities). Requirements: first- or second-semester standing.</td>
</tr>
<tr>
<td>IE:2000</td>
<td>Industrial Engineering Sophomore Seminar</td>
<td>0 s.h.</td>
<td>Curriculum and profession; ethics and professionalism in classroom and workplace. Requirements: sophomore or transfer standing in engineering.</td>
</tr>
<tr>
<td>IE:3000</td>
<td>Professional Seminar: Industrial Engineering</td>
<td>0 s.h.</td>
<td>Professional aspects of industrial engineering presented through lectures and discussions by guest speakers, film trips, panel discussions. Requirements: junior standing.</td>
</tr>
<tr>
<td>IE:3149</td>
<td>Information Visualization</td>
<td>3 s.h.</td>
<td>Instruments for reasoning about quantitative information; analyzing and communicating statistical information; main topologies of data graphics (data-maps, time-series, space-time narrative, relational diagrams, graphs and methods for dimensionality reduction); language for discussing data visualizations combined with knowledge of human perception of visual objects; how to visualize information effectively by using statistical methods, knowledge of human perception, and basics of data graphics. Requirements: STAT:2020.</td>
</tr>
<tr>
<td>IE:3350</td>
<td>Process Engineering</td>
<td>4 s.h.</td>
<td>Methodologies, algorithms, and tools for processing modeling, analysis, and reengineering; modeling issues in product and component design, product and process modularity, quality, reliability, agility. Offered spring semesters. Requirements: IE:3700.</td>
</tr>
<tr>
<td>IE:3400</td>
<td>Human Factors</td>
<td>3 s.h.</td>
<td>Design of human-machine systems; development of optimum work environments by applying principles of behavioral science and basic knowledge of human capacities and limits. Offered fall semesters. Requirements: PSY:1001.</td>
</tr>
<tr>
<td>IE:3450</td>
<td>Ergonomics</td>
<td>3 s.h.</td>
<td>Ergonomic design of jobs and products in an industrial and consumer market setting; principles of good design, examples of poor design; consequences of poor job and product design; principles of work sampling, usability studies, performance rating, sizing and planning of workstations, hand tool design, ergonomic design in transportation; related group project.</td>
</tr>
<tr>
<td>IE:3500</td>
<td>Information Systems Design</td>
<td>3 s.h.</td>
<td>Structure and design of computer-based information systems; concepts of information systems, decision making; computer hardware, software, data structures; methods for determining system requirements; designing, implementing, evaluating, managing information systems; applied projects. Requirements: ENGR:1300.</td>
</tr>
<tr>
<td>IE:3650</td>
<td>Quality Control</td>
<td>3 s.h.</td>
<td>Basic techniques of statistical quality control; application of control charts for process control variables; design of inspection plans and industrial experimentation; modern management aspects of quality assurance systems. Offered fall semesters. Requirements: STAT:2020 or (STAT:3100 and STAT:3101 and STAT:3200). Same as CEE:3142, STAT:3620.</td>
</tr>
<tr>
<td>IE:3750</td>
<td>Digital Systems Simulation</td>
<td>3 s.h.</td>
<td>Simulation modeling and analysis; emphasis on construction of models, interpretation of modeling results; input and output analysis; hands-on usage of ARENA simulation software, manufacturing, health care, and service. Offered spring semesters. Requirements: IE:3610 and IE:3700.</td>
</tr>
<tr>
<td>IE:3760</td>
<td>Applied Linear Regression</td>
<td>3 s.h.</td>
<td>Regression analysis with focus on applications; model formulation, checking, selection; interpretation and presentation of analysis results; simple and multiple linear regression; logistic regression; ANOVA; hands-on data analysis with computer software. Requirements: STAT:2020 or STAT:2010. Same as IGPI:3200, STAT:3200.</td>
</tr>
<tr>
<td>IE:3998</td>
<td>Individual Investigations: Industrial Engineering</td>
<td>arr.</td>
<td>Independent projects in industrial engineering for undergraduate students, including laboratory study, an engineering design project, analysis and simulation of an engineering system, computer software development, CAD/CAM applications, or research.</td>
</tr>
</tbody>
</table>
IE:4113 Control of Mechanical Engineering Systems 3 s.h.
How to model simple engineering systems, apply time and frequency domain analysis techniques, and design control systems; application of these techniques using MATLAB; writing differential equations describing engineering systems and determine time domain response to a wide range of inputs; use of state-variable equations to model engineering systems and determine their time response to a wide range of inputs; describe advantages of feedback control; analyze performance of control systems; determine stability of control systems using Root-Locus, Bode, and Nyquist methods; design feedback control systems using frequency domain and state-variable methods. Prerequisites: MATH:2550 and MATH:2560 and ENGR:2710. Same as ME:4113.

IE:4116 Manufacturing Processes Simulations and Automation 3 s.h.
Material processing, metal cutting theories, forming, micro/nano fabrication, programmable logic controller, computer numerical controllers, discrete control system, DC and AC servo motors, Command generation. Prerequisites: ENGR:2760. Same as ME:4116.

IE:4172 Big Data Analytics 3 s.h.
Principles of data mining and machine learning in context of big data; basic data mining principles and methods—pattern discovery, clustering, ordering, analysis of different types of data (sets and sequences); machine learning topics including supervised and unsupervised learning, tuning model complexity, dimensionality reduction, nonparametric methods, comparing and combining algorithms; applications of these methods; development of analytical techniques to cope with challenging and real "big data" problems; introduction to MapReduce, Hadoop, and GPU computing tools (CUDA and OpenCL). Prerequisites: STAT:2020. Requirements: basic programming skills in C, C++, Java, or Python; knowledge of Matlab, Octave, or R; and knowledge of a word processor. Recommendations: IE:3760 and CS:4400 and CS:3330 and MATH:2550.

IE:4175 Safety Engineering 3 s.h.
Systems safety principles and methods, occupational safety, product safety and liability, accident investigation and prevention methods and analysis, hazard analysis, and standards and regulations.

IE:4550 Wind Power Management 3 s.h.
Principles of wind power production, wind turbine design, wind park location and design, turbine and wind park control, predictive modeling, integration of wind power with a grid.

IE:4600 Industrial Engineering Design Project 1-4 s.h.
Projects involving product and related operational system design in an industrial or service organization; associated entrepreneurial or intrapreneurial planning. Corequisites: IE:3300 and IE:3350 and IE:3400 and IE:3450 and IE:3500 and IE:3600 and IE:3750, if not taken as prerequisites.

IE:4620 Design of Experiments for Quality Improvement 3 s.h.
Development of skills necessary to efficiently and effectively design and analyze experiments for quality improvement; topics include experiment planning, design, and statistical analysis of the results; experimentation is beneficial in all phases of industrial processes including new product design, process development, and manufacturing process improvement; students develop successful experiments that can lead to reduced development lead time, enhanced process performance, and improved product quality. Prerequisites: STAT:2020. Requirements: junior (third year) standing.

IE:4650 Mechatronics Engineering for Smart Device Design 3 s.h.
Introduction to basic mechatronics system components and design principles using mechatronics to meet functionality requirements of products, processes, and systems; lab-oriented assignments and team-based projects presented with innovative case studies in diverse application domains; labs require students to use a micro-controller kit to finish hardware development assignments; for students who plan to have a career in areas such as product development, robotics, design and manufacturing automation, technology management and innovations. Prerequisites: ENGR:2120 and ENGR:2760. Same as ME:4650.

IE:4900 Introduction to Six Sigma 3 s.h.
Six Sigma techniques for the DMAIC cycle (Define, Measure, Analyze, Improve, Control); what is needed for data collection (process inputs and outputs, measurement tools), conduct analysis (hypothesis testing, process capability studies), and conduct process improvement studies (design of experiments, response surface methodology); overview of Six Sigma, process and project management skills; application of the DMAIC model to a real-life improvement projection (a "learn-by-doing" approach). Prerequisites: IE:3600.

IE:5000 Graduate Seminar: Industrial Engineering 1 s.h.
Recent advances and research in industrial engineering presented by guest lecturers, faculty, students. Requirements: graduate standing.

IE:5860 Health Informatics I 3 s.h.
Technological tools that support health care administration, management, and decision making. Same as HMP:5370, IGPI:5200, MED:5300, SLIS:5900.

IE:5995 Contemporary Topics in Industrial Engineering arr.
New topics or areas of study not offered in other industrial engineering courses; topics based on faculty/student interest.

Individual projects for industrial engineering graduate students: laboratory study, engineering design, analysis and simulation of an engineering system, computer software development, research. Requirements: graduate standing.

Experimental and/or analytical investigation of an approved topic for partial fulfillment of requirements for M.S. with thesis in industrial engineering. Requirements: graduate standing.
IE:6211 Human Factors in Healthcare Systems 3 s.h. Solving human factors problems in health care work systems; cognitive systems engineering, interface design, health care productivity, patient safety; specific research including decision making, information transfer, and communication; discrete event and dynamic systems simulation modeling; human computer interaction; health information technology/systems; usability; business models of organizational, technical, and social elements of health care systems.

IE:6220 Cognitive Engineering 3 s.h. Cognitive engineering principles; decision making and judgment; distributed cognition; cognitive work; human system interaction; cognitive work analysis; situated action and ecological models; mental models and representation; cognitive engineering methods and applications.

IE:6232 Advanced Computer-Aided Design and Manufacturing 3 s.h. In-depth study of CAD and manufacturing (CAD/CAM); review of CAD/CAM, computer graphics, NURBS modeling (curves/surfaces, solid modeling, design data exchange); computational geometry for product development, heterogeneous object modeling, rapid prototyping (RP) and layered manufacturing, computer-aided path planning, CAD applications (computer-aided tissue engineering, biomedical imaging and processing, biomaterial manufacturing); related lab projects and assignments. Requirements: knowledge of one programming language (C, C++, C#, VB, or Java).

IE:6300 Innovation Science and Studies 3 s.h. Innovative typology and sources, classical innovation models, measuring innovation, innovation discovery from data, evolutionary computation in innovation, innovation life cycle.

IE:6350 Computational Intelligence 3 s.h. Concepts, models, algorithms, and tools for development of intelligent systems; data mining, expert systems, neural networks for engineering, medical and systems applications. Prerequisites: IE:3700. Same as NURS:6900.

IE:6410 Research Methods in Human Factors Engineering 3 s.h. Logic and methods for research and for analysis and evaluation of complex human-machine systems; advanced techniques for enhancement of human interaction with advanced information technology; emphasis on cognitive task analysis techniques for innovative design, understanding of how technology affects safety, performance, user acceptance.

IE:6420 Human/Computer Interaction 3 s.h. Development of projects using human factors principles in the design of computer interfaces.

IE:6440 Airborne Design of Experiments 3 s.h. Issues in design of airborne human factors research, and techniques applicable to ground transportation research; statistical, human factors, flight mechanics, and organizational principles in flight test engineering; basic understanding of systematic approach to human factors flight testing, development of test points and test apparatus, flight envelope, proper briefing techniques, mission execution, and after-action review; securing, synchronizing, and analyzing data.

IE:6450 Human Factors in Aviation 3 s.h. Measuring, modeling, and optimizing human visual performance; display design for optimal legibility, research in visibility, legibility, conspicuity, and camouflage; visibility model development.

IE:6460 The Design of Virtual Environments 3 s.h. Development of techniques for designing and creating three-dimensional representations of information for simulation, scientific visualization, and engineering; emphasis on human factors issues, software.

IE:6480 Unmanned Aircraft Systems 3 s.h. Applications and research in unmanned aircraft systems (UAS) with focus on engineering aspects; new era of aviation and how UAS are fast emerging as a disruptive technology in aviation; applications ranging from film production, photography, precision agriculture, remote sensing, and infrastructure inspections to military applications; problem space of UAS from a variety of angles including engineering controls design, data links, UAS types, human factors, regulatory aspects.

IE:6600 Linear Programming 3 s.h. Mathematical programming models; linear and integer programming, transportation models, large-scale linear programming, network flow models, convex separable programming. Requirements: calculus and linear algebra. Same as IGPI:6600, MSCI:6600.

IE:6720 Nonlinear Optimization 3 s.h. Mathematical models, theory, algorithms for constrained and unconstrained nonlinear optimization; optimality conditions and aspects of duality theory; applications of nonlinear optimization in data analytics and machine learning.

IE:6750 Stochastic Optimization 3 s.h. General tools and approaches used in decision making under uncertainties; modeling of uncertainties and risk, changes that uncertainties bring to the decision process, difficulties of incorporating uncertainties into optimization models, common techniques for solving stochastic problems.

IE:6760 Pattern Recognition for Financial Data 3 s.h. Modeling and harvesting useful information and patterns for financial data; topics include basic concepts of financial data, financial data visualization, modeling and forecasting of financial time series, seasonal models, volatility models, value at risk, principal component analysis, and factor models.

IE:6780 Financial Engineering and Optimization 3 s.h. Quantitative methods of modeling various financial instruments (i.e., stocks, options, futures) and tools for measurement and control of risks inherent to financial markets; fundamentals of interest rates; options and futures contract valuation, including weather and energy derivatives; risk management and portfolio optimization; emphasis on modeling and solution techniques based on optimization and simulation approaches traditional to industrial engineering and operations research. Recommendations: basic knowledge of probability and statistics, numerical methods, and optimization.

IE:6790 Reliability Theory and Applications 3 s.h. Fundamental topics in reliability engineering, including system reliability modeling, statistical inference of lifetime data, basic preventive maintenance models; statistics and random process models, and online monitoring and change detection techniques. Prerequisites: MATH:2550 and STAT:2020.

IE:7998 Special Topics in Industrial Engineering arr.
IE:7999 Research: Industrial Engineering Ph.D.
Dissertation arr.
Experimental and/or analytical investigation of an approved topic for partial fulfillment of requirements for Ph.D. in industrial engineering.